Please use this identifier to cite or link to this item:
https://er.knutd.edu.ua/handle/123456789/27791
Title: | Effective machine learning in linguistics |
Authors: | Krasniuk, Svitlana |
Keywords: | linguistics machine learning deep machine learning |
Issue Date: | Oct-2024 |
Publisher: | LLC SPC "InterConf" ; Riga : Avots |
Citation: | Krasniuk S. Effective machine learning in linguistics / S. Krasniuk // Scientific Collection "InterConf", (№ 219, October, 2024) with the Proceedings of the 4th International Scientific and Practical Conference "Scientific Progressive Methods and Tools", Riga, Latvia, October 6-8, 2024 / comp. by LLC SPC "InterConf", Riga : Avots, 2024. – Р. 57-62. – Retrieved from https://archive.interconf.center/index.php/conference-proceeding/issue/view/6-8.10.2024 |
Abstract: | Machine learning (ML) in modern linguistics is extremely relevant and effective due to its ability to automate complex processes of natural language processing, text analysis, and linguistic data processing. Modern language models and machine learning algorithms are able to perform tasks that previously required significant human resources or were difficult to achieve. Machine learning is critical to modern linguistics, as it allows automating the processing of linguistic data, greatly increasing the efficiency and accuracy of linguistic research and practical applications. Its relevance lies in the need to process large volumes of textual information, and efficiency is ensured by the speed and adaptability of algorithms. The future of machine learning in linguistics is closely related to the development of computational methods, access to qualitative data, and the development of new models to better understand language. |
URI: | https://er.knutd.edu.ua/handle/123456789/27791 |
Faculty: | Інститут права та сучасних технологій |
Department: | Кафедра філології та перекладу (ФП) |
Appears in Collections: | Кафедра філології та перекладу (ФП) Матеріали наукових конференцій та семінарів |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Тези_Ріга_титул.pdf | 1,85 MB | Adobe PDF | View/Open | |
Тези_Ріга_стор.57-62.pdf | 295,84 kB | Adobe PDF | View/Open | |
Тези_Ріга_зміст.pdf | 226,91 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.