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Dislocation-pipe diffusion (DPD) becomes a major contribution to device failure in
microelectronic components at working temperatures. Usually, the simple random
walk law for diffusion (Type C kinetics t1/2) is employed to calculate of DPD coeffi-
cients. The article presents an analytically solvable model of describing the diffusion
phase cone growth along dislocation pipes inside polycrystal grains involving out-
flow from dislocation lines (Type B kinetics). Correlative analytical method to solve
differential diffusion equations for such model is suggested. Competition between
phase cone growth along dislocation lines involving outflow and phase wedge growth
along grain boundaries (GBs) involving outflow is analyzed. It is shown that while
phase wedge growth law along GBs is the Fisher regime t1/4, phase cone growth
law along dislocation lines is another diffusion regime t1/6 . Real experimental data
are analyzed using such diffusion regime. It is shown that it is possible to calculate
DPD coefficients not only for the phase cone formation, but for migration of atoms
along dislocations and self-diffusion along dislocation pipes too. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5041728

INTRODUCTION

Model of intermediate phase growth with a narrow concentration range of homogeneity, ∆C1,
between low-soluble components during diffusion along grain boundaries involving outflow was
suggested1 and criteria for a transition from the Fisher regime t1/4 to a parabolic one (t1/2) was
analyzed. It was analytically proved2 that perpendicular grain boundaries do not influence phase
growth kinetics in B-regime. This result enables using the well-known model of a polycrystal as a
3-D array of grain boundaries to be perpendicular to the interface for describing the phase growth.
A model to describe analytically the diffusion spherical phase growth from point source inside
polycrystal grains was presented.3 It was shown that spherical phase growth law from point source
is t1/3.

MODEL
Physical model of dislocation-pipe diffusion involving outflow is as follows (Fig.1). Diffusion

flux, jd , flows along dislocation pipe with diffusion coefficient Dd and, simultaneously, outflows into
volume from each point, dy, with bulk diffusion coefficient D<<Dd

4 in 2-D space to be perpendicular
to the dislocation pipe (Eq.1).

πR2
dC1

dy
dt
= πR2

d jd − 2πRd

y(t)∫
0

j1dy (1)
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FIG. 1. Model of the intermediate phase cone formation during A-atoms diffusion along dislocation line involving outflow
from the dislocation pipe.

where Rd is the radius of dislocation pipe.

Here jd(t)=
Dd∆C1

y(t)
and j1(t)=D

∂C
∂R
=

D∆C1

R(t, 0)
=

D∆C(R(t, y))
R(t, y)

. (2)

Concentration profiles are approximately linear1 along dislocation line and along the phase cone
radii.

Correlative differential diffusion equation is as follows:

dy
dt
=

Dd∆C1

C1y(t)
−

2D∆C1y(t)
C1R(t, 0)Rd

. (3)

Phase grows law for R(t,0) is unknown, so we can slightly modify the model (Fig.2). A model is
based on the following assumptions.

1. Diffusion flux flows along dislocation line only up to the first dislocation step, then it flows
in spherical symmetry and along dislocation line, simultaneously, up to the second dislocation
step and so on. The dislocation steps are regarded as the point sources having a diameter of
δ ≈ 1nm ≈ 2Rd .

2. Ratio DGB
Dd
≈ 101→ 102 depends on temperature5 (DGB is the grain boundary diffusion coeffi-

cient).
3. Formed spherical phases 1 broadens in 3-D space from the dislocation steps due to diffusion

with a diffusion coefficient D1 ≈ D. It is important for the analysis.
4. Phase grows law for R(t,0) is3

R(t, 0)= 3

√
3D1∆C1δ

2C1

3
√

t. (4)

Here R(t,0) is the radius of spherical phase formed from the first dislocation step, R(t,y) are the
radii of spherical phases formed from the next dislocation steps.

FIG. 2. Model of the intermediate phase cone formation during A-atoms diffusion along dislocation line involving outflow
from the dislocation steps.
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METHOD

One can get from eq.3 differential equation for intermetallic compound cone cusp, y(t), growing
inside polycrystal grains along dislocation lines involving outflow from the dislocations steps:

dy(t)
dt
=

A
y(t)
− Bd

y(t)
3
√

t
(5)

where A= Dd∆C1
C1

, Bd =
3

√
27D2

1(∆C1)2

3C2
1δ

4 .

In the Appendix we prove that the phase growth law during Type B kinetics is

y(t)=

√
A
Bd

3
√

t

or

y(t)=

√
A
Bd

6
√

t =

(
Dd

D1

)1
/
3
D

1
/
6

d

(
∆C1

C1

)1
/
6 3

1
/
6δ

2
/
3

2
7
/
6

t
1
/
6. (6)

The physical dimensionalities method shows that [y(t)]=
[

m2

s

]1
/
6[m]

2
/
3[s]

1
/
6 = [m] so the solution (6)

is reasonable.

ANALYSIS

The equation for yGB(t) of the growing phase wedge nose along GB involving outflow has such
form:1,2

dyGB(t)
dt

=
AGB

yGB(t)
− BGB

yGB(t)
√

t
, (7)

where

AGB =
DGB∆C1

C1
, BGB =

√
2D∆C1

C1δ2
, (8)

and

yGB(t)=

√
AGB

BGB

√
t −

AGB

4B2
GB

(1 − e−4BGB
√

t). (9)

Equation (9) show the Fisher diffusion regime

yGB(t)=

√
AGB

BGB

4
√

t (10)

for tGB→wedge >
C1δ

2

2D∆C1
and yGB(tGB→wedge)>

√
DGB
2D δ.

Ratio DGB
D ≈ 103→ 105 depends on temperature1 so yGB(tGB→wedge)> 30nm→ 300nm depen-

dently on temperature. Equation (6) shows diffusion regime t1/6 for td→cone >
√

3C1δ
2

25D1∆C1
and y(td→cone)>√

Dd
D1

4√3
4 δ. Ratio Dd

D1
= D

D1

DGB
D

Dd
DGB
≈ D

D1
102→ D

D1
103 so y(td→cone)> 3nm→ 10nm dependently on tem-

perature. We can analyze competition between phase cone growth along dislocation pipes involving
outflow and phase wedge growth along grain boundaries involving outflow (Fig.3). Here x(t,0) is the
phase layer thickness formed in A-B planar specimen due to volume diffusion, x(t,y) is the phase
wedge thickness formed in A-B planar specimen (B is bicrystal) due to grain boundary diffusion with
simultaneous outflow in volume,1,2 y(t) is the growing phase cone cusp along dislocation line, yGB(t)
is the growing phase wedge nose along GB.

Ratio yGB(td→cone)
y(td→cone) =

√
2

3
1
/
8

√
DGB
Dd

4
√

D1
D ≈ 4→ 12 dependently on temperature. Ratio DGB

Dd
is more

important than ratio D1
D .
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FIG. 3. Growing phase wedge along GB involving outflow and growing phase cone along dislocation line involving outflow
competition.

Ratio
R(tGB→wedge,0)
x(tGB→wedge,0) =

2D1D
1
/
6

GB

DD
1
/
6

d

≈ 2 D1
D ≈ 2. Ratio D1

D is more important than ratio DGB
Dd

.

It seems that Fig.3 is like Figure 3.5 The diffusion length penetration of Hf into a HfN/ScN super-
lattice sample was directly measured and an average value was calculated5 (y(24h)=4.5nm at 9500C).
The shape of the Hf diffusion front is like as shown in Fig.3 (diffusion cone R(t,y)). One can esti-

mate,1
(
∆C1
C1

)
≈ 10−1, and y6(t)=

(
Dd
D1

)2
Dd

(
∆C1
C1

)
3δ4

27 t ≈
(

Dd
D1

)2
Dd

δ4t
400 , and DHf

d ≈
(

Dd
D1

)−2 400
t

(
y
δ

)4
y2 ≈

4
(

Dd
D1

)−2
∗10−17 m2

s ≈ 3.8∗10−21 m2

s if Dd
D1
≈ 102 at such temperature. Figure 35 shows that y(48h)≈5nm

at 9500C and DHf
d ≈ 3.6 ∗ 10−21 m2

s . The authors5 obtained DHf
d ≈ 2.34 ∗ 10−22 m2

s .

SUMMARY

The growth law of the phase cone during the intermetallic compound formation with a narrow
concentration range of homogeneity inside polycrystal grains is parabolic for diffusion time td→cone <√

3C1δ
2

25D1∆C1
and y(td→cone)< 3nm→ 10nm dependently on temperature. Phase growth law t1/2 transit

into phase growth law t1/6 when td→cone >
√

3C1δ
2

25D1∆C1
and y(td→cone)> 3nm→ 10nm dependently on

temperature. Phase growth law t1/6 is valid during Type B kinetics of dislocation-pipe diffusion. It
is possible to calculate DPD coefficients not only for the phase cone formation, but for migration of
atoms along dislocations and self-diffusion along dislocation pipes too.

APPENDIX

One can simplify equation (4) by the following way

dz(t)
dt
= 2A −

2Bd
3
√

t
z(t), (A1)

where z(t)= u(t)v(t)= y2(t).
One can transform equation (A1) into

du(t)
dt

v(t) + u(t)

(
dv(t)

dt
+

2Bd
√

t
v(t)

)
= 2A. (A2)

Assumption
dv(t)

dt
+

2Bd
3
√

t
v(t)= 0 leads to v(t)= e−3Bd

3√
t2
= e−m2

, (A3)
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where

m2 = 3Bd t
2
/
3 or m=

√
3Bd t

1
/
3. (A4)

Next step gives:

u(t)= 2A

t∫
0

e3Bd t
2
/
3
dt =

2A√
3B3

d

m∫
0

em2
m2dm=

A√
3B3

d

*..
,
mem2

−

m∫
0

em2
dm

+//
-

(A5)

and

z(t)=
A√
3B3

d

*..
,
m − e−m2

m∫
0

em2
dm

+//
-
=

A
B

t
1
/
3 −

Ae−m2√
3B3

d

m∫
0

em2
dm (A6)

or

y(t)=

√√√√√√ A
Bd

3
√

t −
Ae−m2√

3B3
d

m∫
0

em2 dm. (A7)

It is well known that ∫ e−m2
dm=

√
π

2 erf (m) and ∫ em2
dm=

√
π

2i erf (mi), where i=
√
−1.

It was shown6 that exact solution erf (m)= 2√
π

m

∫
0

e−n2
dn can be approximated by the follow-

ing expression: erf (m)≈ th( 2√
π

m)= 1−e
− 4√

π
m

1+e
− 4√

π
m

because of d(erf (m))
dm

���m=o
=

d
(
th

(
2√
π

m
))

dm

������m=0

= 2√
π

. It has a

deviation from the exact solution of less than 1.9%. It is a precise solution for the main part of the
diffusion zone (the deviation is less than 0.1% if m= x(t,y)

x(t,0) <
1
4 ). Here x(t,0) is the phase layer thickness

formed in A-B planar specimen due to volume diffusion, x(t,y) is the phase wedge thickness formed
in A-B planar specimen (B is bicrystal) due to grain boundary diffusion with simultaneous outflow in
volume.1 It is possible to analyze the experimental results presented7 using the methods described6,8

but it is not the problem being considered in this article. We can get finally:

y(t)=

√√√√√√ A
Bd

3
√

t −
Ae−m2√

3B3
d

√
π

2i
1 − e

− 4√
π

mi

1 + e
− 4√

π
mi

. (A8)

So the phase growth law during Type B kinetics is y(t)=
√

A
Bd

3
√

t.
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