ОРИГИНАЛЬНЫЕ СТАТЬИ

УДК 543.070:4

ПЛАЗМОХИМИЧЕСКАЯ ПРОБОПОДГОТОВКА В АТОМНО-АБСОРБЦИОННОМ ОПРЕДЕЛЕНИИ СЕРЕБРА В ТЕХНОЛОГИЧЕСКИХ РАСТВОРАХ

© 1997 г. Ф. А. Чмиленко*, А. А. Пивоваров**, Т. М. Деркач**, А. Н. Куксенко**

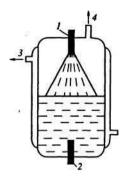
Днепропетровский государственный университет 320625 ГСП, Днепропетровск, 10, просп. Гагарина, 72 ** Научно-технический центр "Техносистем" 320059 Днепропетровск, у л. Строителей, 34 Поступила в редакцию 10,03,95 г., после доработки 20,09,95 г.

Показана возможность использования неравновесной плазмы как эффективного средства пробоподготовки для пламенного атомно-абсорбционного анализа технологических растворов, содержащих цианид-ионы, с целью устранения их влияния на результаты определения серебра.

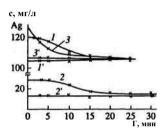
Атомно-абсорбционная спектрометрия является распространенным методом определения благородных металлов в широком интервале содержаний (от микропримесей до основного компонента). Для определения золота и серебра в концентратах, рудах, сплавах и электролитах обычно применяют пламенную атомно-абсорбционную спектрометрию, а иногда при малом содержании - гибридный метод с экстракционным концентрированием [1]. Для анализа природных и сточных вод, а также при анализе бедных руд чаще всего применяют непламенные варианты.

Стадия пробоподготовки - одна из наиболее длительных в аналитическом процессе. Даже при анализа растворов на нее может затрачиваться до 95% общего времени анализа [2]. В последние годы с целью интенсификации пробоподготовки широко применяют физические методы воздействия на анализируемое вещество: радиолиз, фотолиз, ультразвук [3, 4]. С этой точки зрения представляется интересным изучение возможностей использования плазмохимических процессов при атомно-абсорбционном определении благородных металлов. Плазмохимическая пробоподготовка в литературе не описана.

В настоящей работе рассмотрены особенности анализа технологических цианистых растворов, содержащих благородные металлы - золото и серебро, предварительно обработанных неравновесной плазмой с целью существенного снижения влияния основы на атомную абсорбцию серебра.


Известно, что при пламенном атомно-абсорбционном определении золота [5] присутствие цианид-ионов в концентрациях, превышающих 2 мг/мл вызывает эффекты влияния основы. Несмотря на то, что в отношении серебра эти эффекты проявляются слабее, для аналитических целей важно полностью устранить эти влияния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Определение серебра проводили на серийных спектрофотометрах "Сатурн-3П-1" с комплексом для электротермической атомизации пробы "Графит-2", а также AAS-1 и AAS-3 (Германия) в пламени ацетилен-воздух и пропан-бутан-воздух. Метрологические характеристики определения серебра в этих пламенах близки

Объектом исследований были технологические растворы следующего состава: КСN - 0.031-0.57 моль/л, КОН - 0.113-1.76 моль/л, содержащие Au - до 310.0 мг/л, Ag - до 100.0 мг/л, Cu - до 300.0 мг/л, Zn - до 112.5 мг/л.

Исследования проводили с использованием лабораторной установки. Реактор объемом 10⁻⁴ м³, диаметром 34 мм. длиной 220 мм. изготовленный из молибденового стекла имел наружную цилиндрическую рубашку водяного охлаждения (рис. 1). В верхней части реактора расположен ввод подвижного металлического анода, а также патрубок для вакуумной откачки газовой фазы, в нижней - ввод подвижного металлического катода. Для питания цепи разряда использован мостовой выпрямитель с регулируемым на его входе напряжением и фильтрацией колебаний с помощью П-образного фильтра на входе. Коэффициент пульсации менее 5%. Поджиг разряда осуществлялся с помощью высоковольтного разрядника, подключенного параллельно цепи электропитания разряда с конденсаторной защитой основного источника [6]. Параметры процесса: сила тока - 0.11 А, напряжение -406-800 В, давление 1х10⁴ Па. Параметры плазменного разряда регистрировали с помощью показывающих приборов типа М4200,

Рас. 1. Схема плазмохимического реактора. *I* - анод, 2 - катод, 3 - вода, 4- к вакуум-насосу.

Puc. 2. Результаты определения серебра при изменении времени обработки технологического раствора плазмой:

1, 2, 3 - по градуировочному графику; 2', 3' - по методу добавок.

класса 4.0 и самопишущих потенциометров типа КСП-4, ЭПП-09, ПДП 04М. Продолжительность плазмохимической обработки растворов варьировали в пределах от 1 до 30 мин. После 50-100-кратного разбавления растворов проводили анализ на содержание металлов.

Определяли серебро по резонансной линии 328.1 нм, используя лампы с полым катодом ЛТ-2 и ЛСП-1 (табл. 1).

Градуировочные графики строили с применением стандартных образцов на серебро - ГСО

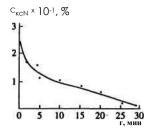


Рис. 3. Содержание КСN в растворе при изменении времени обработки плазмой технологического раствора.

3396-90ЩГСОРМ-12), изготовленных в Институте физико-химических исследований АН Украины (г. Одесса).

Линейность градуировочных графиков сохранялась в интервале 0.5-10.0 мкг/мл, характеристическая концентрация серебра 0.1 мкг/мл.

Установлено, что значение концентрации серебра в исходном растворе при пламенном определении по градуировочному графику завышено по сравнению с концентрацией, определенной по методу добавок. Из рис. 2 видно, что обработка растворов сложного состава плазмой в течении 15-25 мин устраняет эффект влияния основы при определении серебра. Состав растворов указан в табл. 2.

Цианид-ионы в растворе определяли аргентометрически [7]. Изменение содержания цианид- ионов в технологическом растворе в результате плазмохимической обработки показано на рис. 3.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Известно, что если для построения градуировочной характеристики используют образцы сравнения, они должны быть приготовлены так, чтобы их основа была идентична основе анализируемого образца [8]. Завышение результатов определения серебра по градуировочному графику, очевидно, связано с тем, что при его построении использованы чистые стандартные растворы.

Об эффективности плазмохимической пробоподготовки и устранении эффекта влияния основы судили по совпадению результатов атомно-аб-

Таблица 1. Условия определения серебра

Ппибпп	Резонансная	Ток лампы, мА	Щель монохро-		Расход, л/ч	
	линия, нм	TOK JIAMIIBI, MA	матора, мм	ацетилена	пропан-бутана	воздуха
Сатурн ЗП-1	328.1	5	0.1	82	-	920
AAS-1	328.1	5	0.01	-	20	560

Таблица 2. Состав технологических растворов

Раствор	Концентрация, моль/л		Концентрация, мг/л				
	KCN	кон	Au	Ag	Cu	Zn	
I	0.046	0.113	65.9	98.5	48.3	112.5	
11	0.046	0.113	310.0	12.5	270.0	40.0	
III	0.046	0.113	56.0	100.0	300.0	64.0	

сорбционного определения металлов по градуировочному графику и по методу добавок. В результате такой пробоподготовки в растворе концентрация CN снижается до уровня, влиянием которого можно пренебречь (рис. 3).

Можно предположить, что первичным актом контактного действия неравновесной плазмы являются реакции образования ионов, возбужденных молекул растворителя и вторичных электронов. В результате обработки плазмой технологического раствора протекают окислительновосстановительные процессы за счет генерации перекисных и надперекисных соединений водорода, активных радикалов, приводящие к разрушению

цианидных комплексов серебра и других металлов, что позволяет его атомизировать для получения аналитического сигнала.

- СПИСОК ЛИТЕРАТУРЫ
- 1. Золотов ЮЛ., Кузьмин Н.М. Концентрирование микроэлементов. М.: Химия, 1982. 288 с.
- Кузьмин Н.М. Н Заводск. лаборатория. 1990. Т. 56. №7. С. 5.
- Карякин А.В., Грибовская И.Ф. Методы оптической спектроскопии и люминесценции в анализе природных и сточных вод. М.: Химия, 1987. 304 с.
- Чмиленко ФА., Бакланов А.Н., Сидорова Л.П., Пискун Ю.М. И Жури. аналит. химии. 1994. Т. 49. №6. С. 550.
- Юделевич И.Г., Старцева Е.Л. Атомно-абсорбционное определение благородных металлов. Новосибирск: Наука, 1981.160 с.
- 6. Пивоваров А.А., Приданцев В.Ф., Меликаев Ю.Н. и др. Плазмотехнология-93. Запорожье, 1993. С. 235-239.
- Вячеславов П.М., Шмелева Н.М. Контроль электролитов и покрытии. Л.: Машиностроение, 1985. 96c.
- 8. Шараф МЛ., Иллмен ДЛ., Ковальский Б.Р. Хемометрика. Л.: Химия. 1989.272 с.

Sample Preparation by Plasma Chemistry in the Atomic-Absorption Determination of Silver in Process Solutions

- F. A. Chmilenko*, A A. Pivovarov**, T. M. Derkach**, and A. N. Kuksenko**
 - * Dnepropetrovsk State University, pr. Gagarina 72, Dnepropetrovsk, 320625 Ukraine
- ** Tekhnosistem Research-Engineering Center, ul. Stroitelei 34, Dnepropetrovsk, 320059 Ukraine

It is shown that nonequilibrium plasma can be used as an efficient means for sample preparation in the atomic- absorption analysis of process solutions containing cyanide ions with the aim of eliminating their effect on the results of silver determination.