ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ХРОМСБЕРЕГАЮЩЕЙ ТЕХНОЛОГИИ ДУБЛЕНИЯ КОЖ

Марухленко М.А.3, Мокроусова Е.Р.2, Охмат Е.А.3

Киевский национальный университет технологий и дизайна, г. Киев, Украина

Работа направлена на разработку технологических параметров процесса дубления кож с сокращенным расходом соединений хрома путем применения материалов на основе модифицированных дисперсий монтмориллонита. Использование модифицированных дисперсий монтмориллонита для дубления кож способствует повышению качества готовых кож и уменьшению негативного влияния на окружающую среду.

Ключевые слова: дубление, дисперсия, модификация, монтиоризлонит, хромовый дубитель, алюмосиликат, производство кож.

Современные кожевенные предприятия для производства кож для верха обуви пренмущественно используют хромовый метод дубления (80-90 % от общего объема производства). Однако актуальные экологические проблемы и ресурсосберегающие направления производства кож обусловливают разработку и внедрение в технологический процесс дубления материалов на основе модифипированных дисперсий монтмориллонита (МДМ) [1, 2].

Для исследований и разработки оптимальных технологических параметров хромсберегающего процесса дубления голья с использованием МДМ сформировано 6 групп образцов голья бычины легкой. Группы образцов 1-5 были опытными, 6 группа — контрольная. Обработку образцов всех групп осуществляли по действующей технологии дубления кож АО «Чинбар» (г. Киев) [3].

Согласно технологии, в отработанный пикельный раствор для обработки голья добавляли хромовый дубитель основностью 38-40 % в пересчете на Cr₂O₃ от массы голья в соответствии с вариантами обработки (табл. 1). Для опытных групп через 1 ч обработки в рабочую жидкость вводили МДМ. Расход химических материалов указан в таблице 1.

Через 3 ч обработки для всех групп производили повышение основности соедивений хрома добавлением карбоната натрил с интервалом 30 минут при непрерывном вращении барабана. Дубление оканчивали при рН отработанной ванны 4,0-4,5 и положительной пробе на продубленность.

Таблина 1 – Раскод химических материалов при дублении. %

Наименование материала	Вариант обработки							
	1	2	3	4	5	Кон-		
Хромовый дубитель, считая на оксид хрома	1,75	1,50	1,25	1,00	0,75	1,90		
МДМ *	1,00	1.50	2.00	2.50	3.00	-		
Апомосилист ватрия	-	-	-	_	-	1,60		
Карбонат натрия	1,00	0,75	0,50	0,25	0,20	1,35		

в перерасчете на абсолютно сухое вещество

Для дубления голья опытных групп использовали МДМ, которые получали путем модификации монтмориллонита карбонатом натрия с расходом 6,0 % от массы сухого минерала.

После процесса дубления все образцы были прожированы и высущены в свободном состоянии. После увлажиения до 26 %, образцы обрабатывались на тянульно-мягчительной машине с последующим досущиванием в свободном состоянии. После кондиционирования образцов выполняли анализ показателей физикомеханических свойств (таблица 2) и химического состава готовых кож (таблица 3).

Анализ химического состава показал на повышение в коже содержание минеральных веществ и оксида хрома, что подтверждает более эффективную отработку рабочих дубильных жидкостей и лучшее формирование структуры дермы по сравнению с контролем.

Согласно анализа, представленных данных качества готовых кож оптимальным расходом соединений хрома и МДМ для дубления кож являются 1,0–1,2 5% Сг₂О₃ и 2,0–2,5% сухого минерала от массы голья (вариант обработки 3 и 4). Дубление кож по данным вариантами позволяет получить мягкую кожу с повышенным выходом плошади и физико-механическими показателями.

Анализ физико-механических свойств кож показал уменьшение жесткости кож, повышение устойчивости к намоканию и гидротермической устойчивости.

Таблица 2 – Физико-меканические показатели качества готовых кож

Показатель качества кожи	Вариметы обработки						
	1	2	3	4	5	Контроль	Hopsa FOCT 939-88
Выскол по площали, %	102,8	104,6	106,6	106,7	106,7	100,0	•
Кажунийся удельный вес,	652	642	634	632	637	678	•
Жестюсть un IDEV-12M, ×10°, H	29.8	28,7	25,2	24.6	27,7	38,6	
Напряжение при появления трещия лицевого слоя, МПа	18,6	19,7	20,6	21,2	19,8	16,2	Не менее 13.0
Предел прочности, МПа	19,7	20,5	21,1	21,4	20,6	18,1	Не менее 15,0
Удлинение при напряжении 10 МПа, %	32,4	32,2	29,8	31,8	30,2	33,6	20-40
Наокохание, % через: 2 ч 24 ч	47,5 79,8	46,2 80	41,8 80,2	43 ,5 80 ,9	45 <u>.</u> 9 80,4	49,8 88,5	•

Таблица 3 – Показатели химического состава кож

Наточенование							
	1	2	3	4	5	Kontponessi	Hopma FOCT 939-88
Массовая доля. %	•						
- h-ip	12,0	12,0	12,0	12,1	12,0	11,3	10,0-16,0
- OKCICIA XPONEI	4.4	4.6	4.8	4,7	4,5	4.3	4.3
- MITHERA BANK BEIDECTS	6.6	6,6	6,4	6,4	6,5	7,2	-
- вешеств, экстратируе- мых органическими рас- творительни	7,2	7,4	8,0	8,1	8,5	6,4	3,7-10,0
Температура сваривания, °С	106	106	107	107	107	105	-

В целом, использование для дубления кож МДМ способствует повышению эффективности использования соединений хрома, уменьшению их расхода, позволяет качественно сформировать структуру и объем дермы за счет фиксации и экранирования структурных элементов минеральными частицами. При этом использование модифицированных дисперсий монтмориалонита способствует решению проблем экологизации и ресурсосбережения в кожевенном производстве.

Список использованных источников

- 1 Mokrousova O., Danylkovich A., Palamar V. Resources-saving Chromium Tanning of Leather with the Use of Modified Montmorillonite // Revista de chemie (Web of Science). Vol. 66, № 3. 2015. P. 353-357.
- 2 Паламарь В. А., Мокроусова О. Р., Охмат О. А. Пути повышения безопасности натуральных кож // Материалы X международной научно-практической конференции «Кожа и мех в XXI веке: технология, качество, экология, образование». — Улан-Удэ: Издво ВСГУТУ, 2014. — С. 80-86.
- 3 ТМ-7.5-4 Технологічна методика виробництва шкір різноманітного асортименту для верху взуття і підкладки взуття, галантерейних виробів із шкір великої рогатої худоби та кінських. - Киев.: АО «Чинбар», 2009. – 11 с.

References

- 1 O. Mokrousova, A. Danylkovich, V. Palamar Resources-saving Chromium Tanning of Leather with the Use of Modified Montmorillonite // Revista de chemie (Web of Science). Vol. 66, No. 3. 2015. P. 353-357.
- 2 Palamar V.A., Mokrousova O. R., Okhmat O.A. Ways to improve the security of natural leather // Proceedings of the X International scientific-practical conference "Leather and fur in the XXI century: technology, quality, ecology, education ".- Ulan-Ude .: Izd VSGUTU, 2015. P. 80-86.2.
- 3 TM-7.5-4 «Technological methods of producing a wide range of leather for the uppers and linings of footwear, leather goods, cattle and horses».- Kyiv: AO «Chynbar».