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Authors analyze robust neighborhood truncation estimators which operate on lower order statistics 

log-returns. Performed simulations proved additional efficiency and jump robustness of these estimators of 

integrated quarticity. 
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Last decade financial markets were highlighted with emergence and rapid development of the new 

industry sector - high frequency trading. Some years ago it took transactions more then ten seconds in order to 

execute, while nowadays hundreds of them can squeeze in one second. Such a change was mainly driven by 

decimalization of trading prices and advances in technologies: computational powers and data transfer speeds 

have grown exponentially. While such operating speeds are unreachable for human trading, more and more 

market participants started building up computational centers and developing quantitative algorithms with a goal 

to outperform competitors. 

Eventually, these market transformations have led to generation of enormous amounts of high 

frequency data sets, which due to their structure sometimes require review of statistical approaches or creation of 

radically new ones. Estimation of integrated volatility and integrated quarticity is one of those questions, which 

have gained a lot of attention in recent years. Irregularity of the intraday returns of the asset price within high 

frequency data sets coupled with microstructure noise required new robust approaches to estimating these 

values, thus, extensive work in this direction was conducted by solid number of authors.  

In the paper [1] authors introduced for the first time complementary volatility measure, termed realized 

volatility, which is coupled together with realized quarticity measure. 

Bipower variation, as an initial term in multipower variation estimator theory, was proposed by [2]. 

This paper shows that introduced realized bipower variation dispose some robustness to jumps in price 

processes. It was demonstrated that realized bipower variation can estimate integrated power volatility in 

stochastic volatility models and moreover, under some conditions, it can be a good measure to integrated 

variance in the presence of jumps. 

Authors [3] came up with two new jump robust estimators of integrated variance based on high 

frequency return observations, namely MinRV and MedRV. Their findings prove that these estimators can be 

good alternative to the multipower variation estimators. 

Article [4] presented the family of efficient robust neighborhood truncation (RNT) estimators for the 

integrated power variation based on the order statistics of a set of unbiased local power variation estimators on a 

block of adjacent returns. Efficient RNT estimators represent extension of neighborhood truncation estimator’s 

theory. 
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One of the recent works [5], proposes new methodology based on Fourier analysis to estimate spot and 

integrated quarticity. Authors explain that Fourier methodology allows reconstructing the latent instantaneous 

volatility as a series expansion with coefficients gathered from the Fourier coefficients of the observable price 

variation and can be extended to higher even powers of volatility and to the multivariate case. They prove that 

the Fourier estimator of integrated quarticity is consistent in the absence of noise, then test this new methodology 

with the use of Monte Carlo experiments and apply it to S&P 500 index futures. 

In [6] authors analyze in detail different volatility estimators under the presence of market 

microstructure noise. They also discuss influence of sampling frequency on efficiency of estimators and propose 

a way of achieving the optimal one under condition of asymptotically small noise. 

In current paper we would like to focus attention on examination and comparison of different 

combinations of RNT quarticity estimators (RNTQ) that use lower order statistics of log-returns (LOS RNTQ) 

and higher order statistics (HOS RNTQ). Authors [7] made an assumption that LOS RNTQ estimators are more 

affected by market microstructure noise and did not include them to overall simulation analysis. This fact 

seemed to us being worth of further investigation, while based on the simulations performed in [8], estimators 

RNTQ6 1(123), RNTQ6 2(123) under the jump presence were one of the best ones in terms of bias and RMSE 

error, and in general demonstrated decent performance in simulations with stochastic volatility and sparse 

sampling of stock returns. 

During computations we used pre-averaging technique published by [9]. In an elegant way it allows to 

lower the impact of market microstructure noise on the resulting quarticity estimations. 

Integrated quarticity concept and some theories of its estimators can be looked through in [3], [4], [8] or 

any other related article, while now we would like to move directly to robust neighborhood truncation estimators 

and its application.  

Let 1iii SSr , ni ,,1  be n  equally spaced logarithmic returns of the asset price. Then, we 

denote i -th block of absolute returns as 1, ,, miimi rrr  , 1,,1 mni   and j -th order statistic 

of the i -th absolute return block as mijmj rqrrq ,1 ,, . Naturally mimmi rqrq ,,1  . 

Following these notations, baseline Neighborhood Truncation estimator (NT) is given by  
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Placing scaling factor )(),( pd mj  in front of p -th power of the j -th absolute order statistic gives as 

an unbiased estimator for 
p

. 

Neighborhood truncation estimator is a family of estimators, which also incorporates such estimators as 

)(pMinPV  and )(pMedPV . In fact, )(pMinPV  is )(
)2,1(

pNTn  with a scaling factor )()2,1( pd  and 

)(pMedPV  is )(
)3,2(

pNTn  with )()3,2( pd . 
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So far, we have been speaking about straightforward picking j -th statistic from each of return blocks, 

applying respective power and scaling coefficient. Finally, summarizing all these values provides us with the NT 

estimation of power variance. 

Robust neighborhood truncation estimator represents further extension of this approach. General 

algorithm, proposed in [7], is defined by:  
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Roughly speaking such a setup provides a linear combination of NT estimators, which secures better 

robustness and efficiency comparing to the baseline NT estimation. 

Firstly, within the given i -th return block we calculate properly scaled functional of needed order 

statistics )(,),( ,,1 mikmik rr
H

 . Vector mHkkI H 1),,,( 1   in this case defines which vector of 

order statistics we would like in each concrete return block. To received set of H  unbiased estimators for 

Hkk

p ,,
1
  we apply j -th order statistics, which is scaled by respective factor )(),( pd Ij . This gives us 

final value of return functional for the i -th return block. 

Naturally, the )(),( pd Ij  scaling factor, which converts j -th order statistics, applied to the set of 

unbiased 
p

 estimators )(,),( ,,1 mikmik rr
H

 , into a robust unbiased estimator of the given i -th return 

block, depends on the initial RNTQ estimator configuration:  
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For the further examination we have picked a group of RNTQ estimators which covered various order 

statistics configurations: 

 RNTQ5 1(123)      RNTQ5 2(123);  

 RNTQ5 1(345)      RNTQ5 2(345);  

 RNTQ6 1(123)      RNTQ6 2(123);  

 RNTQ6 1(456)      RNTQ6 2(456);  

 RNTQ7 1(1234)    RNTQ7 2(1234);  

 RNTQ7 1(4567).  

Numbers 1  and 2  before parentheses are values of j  coefficient and combinations )4567()123(   

are combinations of vector mHkkI H 1),,,( 1  . In proposed setup estimator RNTQ7 2(4567) was 

omitted due to pure efficiency caused by low jump robustness.  
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Due to the fact that usually there is no closed form solutions for )(),( pd Ij  and )(),( pd mkh
values, they 

were obtained using equations 4-6 via simulations (Table 1). 

 

Table 1. Scaling factors of RNTQ5 and RNTQ7 estimators for different order statistics 

 )4()3,1(d  )4()3,2(d  )4()3,3(d  )4(),1( Id  )4(),2( Id  

)123(5RNTQ  35,14029 5,75253 1,44264 3,67611 1,31886 

)345(5RNTQ  1,44314 0,39879 0,08642 2,60658 1,21894 

)123(6RNTQ  62,75698 10,88057 2,96839 3,52776 1,29788 

)456(6RNTQ  0,95240 0,30849 0,07552 2,32949 1,17506 

 

 )4()4,1(d  )4()4,2(d  )4()4,3(d  )4()4,4(d  )4(),1( Id  

)1234(7RNTQ  104,37888 18,57741 5,31021 1,85594 4,56927 

)4567(7RNTQ  1,85712 0,69869 0,25216 0,06739 2,70389 

 

One can observe that together with the rise of the returns quantity, coefficients grow even more, with a 

sharp distinction between the groups of lower order and higher order returns. 

The asymptotic distribution of RNTQ estimator for pure BM process without jumps [4]:  
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While trying to approximate to some extent the efficiency factors )4;,( Ij  of estimators from chosen 

target group, we have received values postulated in the table 2.  

 

Table 2. Approximate values of )4;,( Ij  for some RNTQ5, RNTQ6 and RNTQ7 estimators applied to 

the pure Brownian motion process 

RNTQ5 1(123) 30,59377 RNTQ6 1(456) 11,0131 

RNTQ5 2(123) 22,59096 RNTQ6 2(456) 10,30176 

RNTQ5 1(345) 11,51716 RNTQ7 1(1234) 40,48261 

RNTQ5 2(345) 10,59576 RNTQ7 4(1234) 29,89296 

RNTQ6 1(123) 39,75629 RNTQ7 1(4567) 11,29826 

RNTQ6 2(123) 28,65126   

 
Analogously to the MPV estimator's property mentioned in [7], scrutinized RNTQ estimators, under the 

no-jump null hypothesis, have a tendency to improve efficiency when block size of returns gets smaller. Another 

important result is, that under pure Brownian motion process (BM), HOS RNTQ perform definitely better then 

LOS RNTQ. Estimators RNTQ5 1(345), RNTQ 2(345), RNTQ6 1(456), RNT6 2(456) and even RNT7 1(4567) 

have asymptotic variances settled around values 10–11. Meanwhile, LOS RNTQ estimators starting from 

RNTQ5 1(123) constantly grow in variance measure, hitting values up to 30–40.  
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In order to examine proposed RNTQ estimators applied to some market patterns, we have used 

following models: 

 Brownian motion process (BM) with and without jumps; 

 Stochastic volatility model with intraday U-shape volatility pattern (SV-U model); 

 Sparse sampling model (irregular trade intervals). 

Within all the models (except sparse sampling), we simulate data between 9:30 and 16:00 with a 1 

second interval, which results in 23400 observations per day. 

 For the sparse sampling model another approach is used: initially, for each trading day we generated 

BM process with 23400 values, and at the next step values out of resulted time series were picked using Poisson 

distribution with 2 , in order to get non-homogeneous data time-arrivals.  

This approach was providing us with a sample, whose size varied on average between 10850 and 11050 

time points.  

Unconditional daily volatility is set to 0.000159, which is equivalent to around 20% per annum. In each 

of the cases 2400 days were simulated, which covers almost 10 years of stock market activity. 

BM model with one random jump clearly showed significantly greater biases of estimators RNTQ5 

1(345), RNTQ5 2(345), RNTQ6 1(456), RNTQ6 2(456) and RNTQ7 4(4567) (especially with a sampling 

window greater then 120 seconds). All the other estimators, while grouped quite tightly, together show relatively 

small bias (Fig. 1). With RMSE errors situation looks quite similar, with a breaking point again at 120 second 

sampling window size. 

 
 

Fig.1. RNTQ estimators applied to BM stochastic process with 1 jump of a randomly distributed  

2–5% size 
 

We can definitely say that LOS RNTQ are more robust to the presence of a random jump within trading 

interval. This seems reasonable, while picking values out of the group of lower order returns, most surely will let 

us omit the jump component, in case such is present within observable interval. This simulation does not 
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demonstrate difference between, say, estimators RNTQ5 1(345) and RNTQ7 1(4567), but we suppose it will be 

more evident under presence of greater quantity of jumps, which can be verified separately. 

Under the simulation of SV-U model all estimators tend to have downward bias, and it is hard to single 

out some particular one significantly better then the others (Fig. 2). Estimators like RNTQ5 2(345) or RNTQ6 

2(456) are slightly more efficient, both in terms of bias and RMSE error. Overall, applied to SV-U model, HOS 

RNTQ estimators are a bit more efficient then LOS RNT 

 
 

Fig. 2. RNTQ estimators applied to stochastic volatility model with intraday U-shape 

 

Last simulation showed instability of LOS RNTQ estimators against sampling window size. Fig. 3 

reveals that choice of sampling window is quite important when data is sparsely sampled - picking appropriate 

one can let us reach lower levels of bias. Based on Fig. 3, choosing pre-averaging sampling windows of 10-30 

seconds and less (as well as greater then 300 seconds in our case), can lead to rise in bias.  

On the contrary to that, HOS RNTQ estimators revealed constantly good performance, all the time 

stably demonstrating low bias. Thus, in case we speak about non-equidistant returns, in terms of lower RMSE 

errors and bias, HOS RNTQ seem to be more attractive then LOS RNTQ. 

Eventually, LOS RNTQ estimators were much more jump robust then HOS RNTQ, and they also 

showed decent performance in stochastic volatility model and Brownian motion with sparse sampling 

simulations. Constructed models and simulation results are in line with respective literature, thus derived 

efficiency of LOS RNTQ estimators appears to be reliable enough and should not be rejected.  
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Fig. 3: RNTQ estimators applied to BM stochastic process with sparse sampling 
 

Possible way to extend this research include examination of bigger set of more diverse RNTQ 

estimators and their assessment with simulations that would mix several price process models at one time.       
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Застосування нижніх порядкових статистик в робастних відтинаючих оцінках квартісіті 
Черняк О.І., Васильченко І.І. 

Київський національний університет імені Тараса Шевченка 
 

Автори аналізують робастні оцінки сусіднього відтинання, що оперують з нижніми порядковими 

статистиками логарифмічних дохідностей акцій. Проведені симуляції демонструють додаткову 

ефективність цих оцінок квартісіті та їх підвищену стійкість до стрибків. 

Ключові слова: ціна активу, інтегрована волатильність, інтегрована квартісіті, високочастотні 

данні, ринковий мікроструктурний шум. 

 

Применение нижних порядковых статистик в робастных отсекающих оценках квартисити 
Черняк А.И., Васильченко И.И. 

Киевский национальный университет имени Тараса Шевченко 
 

Авторы анализируют робастные оценки соседнего отсечения, которые оперируют с нижними 

порядковыми статистиками логарифмических доходностей акций. Проведенное моделирование 

демонстрирует дополнительную эффективность этих оценок квартисити и их повышенную устойчивость 

к прыжкам. 

Ключевые слова: цена актива, интегрированная волатильность, интегрированная квартисити, 

высокочастотные данные, рыночный микроструктурный шум. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


