Equipment, electrical and automation systems & complexes

УДК 624.071

СУРЬЯНИНОВ Н.Г., ПОТАПЕНКО А.И.

Одесский национальный политехнический университет

ПРИМЕНЕНИЕ МАТРИЦ ПЕРЕХОДА В КРАЕВЫХ ЗАДАЧАХ РАСЧЕТА ТОНКОСТЕННЫХ СТЕРЖНЕЙ

Мета. Застосування матриць переходу для розв'язку крайових завдань розрахунків тонкостінних стрижнів.

Методика. Напружено-деформований стан тонкостінного стрижня описується відомою системою лінійних диференціальних рівнянь із заданими граничними умовами, для розв'язку якої пропонується новий підхід, заснований на застосуванні матриць переходу.

Результати. Для розв'язку основних рівнянь теорії тонкостінних стрижнів, що враховують депланацію поперечних перерізів і деформацію контуру, використані матриці переходу, що дозволило звести розв'язок крайового завдання до розв'язку завдання Коші. При цьому на форму перетину не накладається ніяких обмежень.

Наукова новизна. Новий метод зведення крайового завдання до завдання Коші для тонкостінного стрижня.

Практична значимість. Отримані в роботі вираження й перетворення легко програмуються, а потім можуть бути реалізовані в будь-якому сучасному математичному пакеті.

Ключові слова: матриця переходу, тонкостінний стрижень, крайове завдання, завдання Коші.

Введение. Тонкостенные стержни находят широкое применение в самых разных отраслях промышленности. Это, в первую очередь, прокатные профили, сортамент которых постоянно пополняется новыми формами и материалами. Это также разнообразные элементы машин и механизмов, крановые конструкции, корпуса судов, самолетов, ракет, пролетные строения мостов, плиты перекрытий и др. Сказанное делает очевидной актуальность совершенствования уже известных подходов к расчетам таких конструкций и разработки новых, опирающихся на возможности современной компьютерной техники и программного обеспечения.

Постановка задачи. Объектом исследования является тонкостенный стержень произвольного поперечного сечения (открытого, замкнутого или комбинированного), подверженный воздействию статических нагрузок при любых условиях закрепления стержня. Напряженно-деформированное состояние тонкостенного стержня описывается известной системой линейных дифференциальных уравнений, для решения которой предлагается новый подход.

Система линейных дифференциальных уравнений относительно перемещений $u_m(z)$ и $v_k(z)$ тонкостенного стержня (рис. 1) получена В.З. Власовым [1] и имеет вид

$$\begin{cases} \gamma \sum_{i=1}^{m} a_{ji} u_{i}'' - \sum_{i=1}^{m} b_{ji} u_{i} - \sum_{k=1}^{n} c_{jk} v_{k}' + \frac{1}{G} p_{j} = 0; \\ \sum_{i=1}^{m} c_{hi} u_{i}' + \sum_{i=1}^{m} r_{hk} v_{k}'' - \gamma \sum_{k=1}^{n} s_{hk} v_{k} + \frac{1}{G} q_{h} = 0, \end{cases}$$

$$(1)$$

где
$$\gamma = \frac{E}{G}$$
; $a_{ji} = \int_{A} \varphi_{j}(s)\varphi_{i}(s)dA$; $b_{ji} = \int_{A} \varphi'_{j}(s)\varphi'_{i}(s)dA$; $c_{jk} = \int_{A} \varphi'_{j}(s)\psi_{k}(s)dA$; $r_{hk} = \int_{A} \psi_{h}(s)\psi_{k}(s)dA$; $s_{hk} = \frac{1}{E}\int_{L} \frac{M_{h}(s)M_{k}(s)}{EI}dS$.

Если в этих уравнениях выбрать функции $\varphi_i(s)$ и $\psi_k(s)$ взаимноортогональными, как это показано в [2], то система значительно упрощается

$$\begin{cases} \gamma a_{jj} u_{j}'' - \sum_{i=1}^{m} b_{ji} u_{i} - \sum_{k=1}^{n} c_{jk} v_{k}' + \frac{1}{G} p_{j} = 0; \\ \sum_{i=1}^{m} c_{hi} u_{i}' + r_{hh} v_{h}'' - \gamma \sum_{k=1}^{n} s_{hk} v_{k} + \frac{1}{G} q_{h} = 0, \end{cases}$$

$$(2)$$

т.к. при этом

$$\begin{cases} a_{ji} = \int_{A} \varphi_{j}(s)\varphi_{i}(s) = 0 & \text{при } j \neq i; \\ r_{hk} = \int_{A} \psi_{k}(s)\psi_{h}(s) = 0 & \text{при } h \neq k. \end{cases}$$
(3)

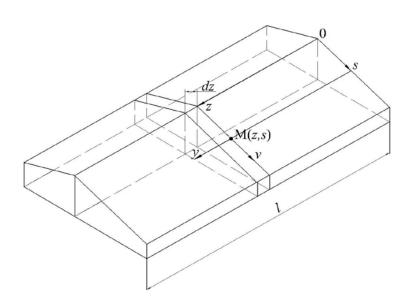


Рис. 1. Тонкостенный стержень произвольного сечения

Если уравнения (2) дополнить граничными условиями, которые могут быть кинематическими, статическими или смешанными, то получим краевую задачу расчета тонкостенного стержня.

Результаты исследования. Путем несложных преобразований, которые здесь не приводим, уравнения (2) можно привести к нормальному виду:

Здесь приняты обозначения: F_1 — продольная сила; F_2 и F_3 —изгибающие моменты; F_4 , F_5 ,...., F_m —продольные бимоменты; u_1 — продольные перемещения; u_2 и u_3 — углы поворота; u_4 , u_5 ,...., u_m — компоненты депланации поперечных сечений; v_1 — угол поворота вокруг продольной оси; v_2 и v_3 —прогибы по направлениям осей; v_4 , v_5 ,...., v_n — компоненты деформации контура сечения; Q_1 —крутящий момент; Q_2 и Q_3 —поперечные силы; Q_4 , Q_5 ,...., Q_n —продольные бимоменты; p_m и q_n — обобщенные внешние силы; m и n — число степеней свободы элементарной полоски (рис. 1) из плоскости и в плоскости соответственно.

Отметим, что уравнения (4) учитывают не только депланацию поперечных сечений, но и деформацию контура. При этом на форму сечения не накладывается никаких ограничений.

В основе большинства методов решения граничных задач лежит сведения граничной задачи тем или иным способом к задаче Коши [3].

Здесь рассмотрим решение при помощи так называемых матриц перехода. Идея метода принадлежит проф. О. В. Лужину, который предложил рассматривать формулы метода начальных параметров как некоторое линейное преобразование и реализовал эту

идею применительно к расчету балок на линейно-деформируемом основании со ступенчато-переменным по длине поперечным сечением [4].

Выделим участок тонкостенного стержня между его началом (z=0) и точкой приложения внешней нагрузки z=l (рис. 2).

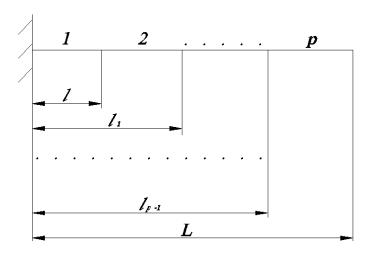


Рис. 2. Схема построения матрицы перехода

Перемещения и усилия в этих сечениях можно связать соотношением

$$\vec{A}(l) = \overline{M} \cdot \vec{A}(0), \tag{5}$$

где $\vec{A}(l)$ и $\vec{A}(0)$ векторы-столбцы, элементами которых являются перемещения и внутренние усилия в сечениях z=l и z=0:

$$\vec{A}(l) = \begin{vmatrix} u_{1}(l) \\ F_{1}(l) \\ \dots \\ u_{m}(l) \\ F_{m}(l) \\ v_{1}(l) \\ Q_{1}(l) \\ \dots \\ v_{n}(l) \\ Q_{n}(l) \end{vmatrix}, \vec{A}(0) = \begin{vmatrix} u_{1}(0) \\ F_{1}(0) \\ \dots \\ u_{m}(0) \\ F_{m}(0) \\ v_{1}(0) \\ Q_{1}(0) \\ \dots \\ v_{n}(0) \\ Q_{n}(0) \end{vmatrix}$$

$$(6)$$

 \overline{M} – квадратная матрица перехода от сечения z=0 к сечению z=l , элементы которой будем обозначать через M_{ij} (i,j=1,2...,n) .

Эти элементы определяются исходя из следующих соображений. Решается 2(m+n) раз задача Коши для системы линейных дифференциальных уравнений (4) в интервале (0,l). На первом шаге начальные условия будут иметь вид

$$u_1(0) = 1; F_1(0) = u_2(0) = \dots = v_n(0) = Q_n(0) = 0.$$
 (7)

Equipment, electrical and automation systems & complexes

На втором шаге принимаем

$$F_1(0) = 1; \ u_1(0) = u_2(0) = \dots = v_n(0) = Q_n(0) = 0.$$
 (8)

На последнем шаге начальные условия будут такими:

$$u_1(0) = F_1(0) = \dots = v_n(0) = 0; \ Q_n(0) = 1.$$
 (9)

Вычисленные на каждом шаге (7) – (9) решения системы (4) перемещения u(z), v(z) и усилия F(z), Q(z), будут являться элементами соответствующих строк матрицы перехода \overline{M} .

Затем за начальное сечение следует принять z=l, проделать все описанные выше операции, заменяя абсциссу 0 на l, а l- на l_1 .

Постепенный переход от сечения z=0 к концевому сечению z=l позволяет, в конечном итоге, выразить величины $u_1(L)$, $F_1(L)$,..., $v_1(L)$, $Q_1(L)$,..., $v_n(L)$, $Q_n(L)$ через значения аналогичных кинематических и статических факторов в сечении z=0. Соответствующее этому преобразованию матричное соотношение имеет вид

$$\vec{A}(L) = \prod_{i=1}^{r} \overline{M}_i \vec{A}(0), \tag{10}$$

где r – число участков, на которое разбивается стержень.

Предположим теперь, что на каком-либо участке, например, на i- ом, к стержню приложена внешняя нагрузка. Принимая соответствующие перемещения и усилия за начальные условия, можно определить дополнительные факторы на конце i- го участка от действия приложенной нагрузки. С учетом этих дополнительных факторов, выражение (10) принимает вид

$$\vec{A}(L) = \prod_{i=1}^{r} \overline{M}_{i} \vec{A}(0) + \sum_{i=i+1}^{r} \overline{M}_{j} \vec{N}, \tag{11}$$

где \vec{N} – вектор приложенной нагрузки.

Знак суммы перед вторым слагаемым в (11) означает, что можно учитывать ряд нагрузок, приложенных в разных сечениях стержня.

Второе слагаемое в правой части (11) можно трактовать как вектор свободных членов и обозначить

$$\sum \prod_{j=i+1}^r \overline{M}_j \vec{N} = \vec{M}_F,$$

тогда (11) будет таким:

$$\vec{A}(L) = \prod_{i=1}^{r} \overline{M}_{i} \vec{A}(0) + \vec{M}_{F}$$

$$\tag{12}$$

ИЛИ

$$\vec{A}(L) = \overline{M}_0 \vec{A}(0) + \vec{M}_F,$$

Equipment, electrical and automation systems & complexes

где

$$\overline{M}_0 = \prod_{i=1}^r \overline{M}_i$$
.

Векторы-столбцы $\vec{A}(L)$ и $\vec{A}(0)$ вместе содержат 4(m+n) элементов, при этом 2(m+n) элементов будут известными в результате рассмотрения граничных условий.

Выполним в (12) следующие преобразования:

- 1) удалим из векторов $\vec{A}(L)$, \overline{M}_F и из матрицы перехода \overline{M}_0 строки, соответствующие ненулевым граничным условиям на правом конце стержня, в сечении z=L;
- 2) удалим из матрицы перехода \overline{M}_0 столбцы, соответствующие нулевым граничным условиям в сечении z=0;
- 3) удалим в векторе-столбце $\vec{A}(0)$ элементы, соответствующие нулевым граничным условиям в сечении z=0.

В результате указанных преобразований, вместо (12), получим систему (m+n) алгебраических уравнений с (m+n) неизвестными начальными условиями:

$$\vec{A}^*(L) = \overline{M}^* \vec{A}^*(0) + \vec{M}_F^*. \tag{13}$$

где знаком «*» обозначены матрицы, усеченные из соответствующих матриц выражения (12) в результате выполнения трех указанных выше преобразований.

Из (13) можно определить неизвестные начальные условия:

$$\vec{A}^*(0) = -(\vec{M}^*)^{-1} \left[\vec{A}^*(L) - \vec{M}_F^* \right]. \tag{14}$$

Окончательно имеем 2(m+n) начальных условий, часть которых известна из условий закрепления левого концевого стержня z=0, а остальные определяются по выражению (14).

Выводы. Таким образом, изложенный подход позволяет свести краевую задачу для тонкостенного стержня к задаче Коши.

Все приведенные выражения и преобразования легко программируются, а затем могут быть реализованы в любом современном математическом пакете (MathCAD, MATLAB и др.).

Список использованных источников

- 1. Власов В. 3. Избранные труды. Т. 3. Тонкостенные пространственные системы / В. 3. Власов. М. : Книга по Требованию, 2013. 488 с.
- 2. Сурьянинов Н. Г. Учет деформации контура поперечного сечения в расчетах тонкостенных стержней / Н. Г. Сурьянинов, Т. Г. Низдропа // Труды ОНПУ. 2014. Вып. 1(43). С. 13–17.
- 3. Вержбицкий В. М. Основы численных методов : учеб. для вузов / В. М. Вержбицкий. М. : Высш. шк., 2002. 840 с.
- 4. Лужин О. В. Теория тонкостенных стержней замкнутого профиля и ее применение в мостостроении / О. В. Лужин. М. : ВИА, 1959. 115 с.

References

- 1. Vlasov V. Z. (2013) *Izbrannyie trudyi. T. Z. Tonkostennyie prostranstvennyie sistemyi* [Thin-walled spatial systems] / V. Z. Vlasov. M.: Kniga po Trebovaniyu, 488 p.
- 2. Suryaninov N. G. (2014) *Uchet deformatsii kontura poperechnogo secheniya v raschetah tonkostennyih sterzhney [Accounting of cross-sectional deformation of the contour in the calculation of thin-walled rods]* / N. G. Suryaninov, T. G. Nizdropa // Trudyi ONPU. Byip. 1(43). P. 13–17.
- 3. Verzhbitskiy V. M. *Osnovyi chislennyih metodov : ucheb. dlya vuzov [Basic Numerical Methods: studies for universities] /* V. M. Verzhbitskiy. M. : Vyissh. shk., 2002. 840 p.
- 4. Luzhin O. V. Teoriya tonkostennyih sterzhney zamknutogo profilya i ee primenenie v mostostroenii [Theory of Thin-walled Shafts with Closed Profile and Its Application to Bridge Construction] / O. V. Luzhin. M.: VIA, 1959. 115 p.

ЗАСТОСУВАННЯ МАТРИЦЬ ПЕРЕХОДУ В КРАЙОВИХ ЗАДАЧАХ РОЗРАХУНКУ ТОНКОСТІННИХ СТРИЖНІВ

СУР'ЯНІНОВ М.Г., ПОТАПЕНКО Г.І.

Одеський національний політехнічний університет

Мета. Застосування матриць переходу для розв'язку крайових завдань розрахунків тонкостінних стрижнів.

Методика. Напружено-деформований стан тонкостінного стрижня описується відомою системою лінійних диференціальних рівнянь із заданими граничними умовами, для розв'язку якої пропонується новий підхід, заснований на застосуванні матриць переходу.

Результати. Для розв'язку основних рівнянь теорії тонкостінних стрижнів, що враховують депланацію поперечних перерізів і деформацію контуру, використані матриці переходу, що дозволило звести розв'язок крайового завдання до розв'язку завдання Коші. При цьому на форму перетину не накладається ніяких обмежень.

Наукова новизна. Новий метод зведення крайового завдання до завдання Коші для тонкостінного стрижня.

Практична значимість. Отримані в роботі вираження й перетворення легко програмуються, а потім можуть бути реалізовані в будь-якому сучасному математичному пакеті.

Ключові слова: матриця переходу, тонкостінний стрижень, крайове завдання, завдання Коші.

APPLICATION TRANSITION MATRIX IN THE BOUNDARY VALUE PROBLEM CALCULATION THIN-WALLED

SURYANINOV N.G., POTAPENKO H.I.

Odessa National Polytechnic University

Outlines the approach, allowing us to reduce the calculation of boundary value problems of thin-walled arbitrary cross-section to the solution of the Cauchy problem.

All necessary correlation matrix, that performs the conversion.

The problem is solved for a system of differential equations that take into account cross-sectional warping and distortion circuit. In this cross-sectional shape to no restrictions.

Keywords: thin-wall bar, warping, distortion circuit, the transition matrix, boundary value problem, the Cauchy problem.