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SUMMARY 

Wang WEIYAN. Leveraging biological experimental mutation and functional data to 

validate an AI-based protein design method. – Manuscript.  

Qualification thesis on the specialty 162 «Biotechnology and Bioengineering». – Kyiv 

National University of Technologies and Design, Kyiv, 2025.  

Protein mutation design is a pivotal technology for precise regulation of protein 

functions, with significant applications in biomedicine and industrial enzyme engineering. 

Traditional experimental methods face limitations such as lengthy cycles, high costs, and 

low mutation-site hit rates. The emergence of artificial intelligence (AI) offers innovative 

solutions to these challenges. This study systematically analyzes ProtSSN, an AI-based 

protein mutation design software developed by Professor Hong Liang’s team at Shanghai 

Jiao Tong University. Using public datasets, the research verifies the algorithm’s predictive 

accuracy and investigates its structure-sensing mechanism, elucidating its advantages and 

limitations in practical applications. 

The study validates ProtSSN’s performance through quantitative experiments and 

innovatively explores the correlation between protein secondary structures, Solvent 

Accessible Surface Area (SASA), and mutation effects. Findings reveal that ProtSSN 

integrates protein sequence semantics and 3D structural topology via a dual-modal pre-

training framework. Leveraging Equivariant Graph Neural Networks (EGNN), it quantifies 

structural features (e.g., hydrophobic cores in α-helices, hydrogen bonds in β-sheets) to 

analyze mutation-induced perturbations. ProtSSN’s lightweight architecture overcomes 

computational bottlenecks of traditional molecular simulations, enhancing wet-lab mutant 

screening efficiency for industrial enzyme optimization and antibody affinity maturation. 

However, the model’s handling of dynamic irregular loops requires improvement, 

suggesting future integration of molecular dynamics or expanded training data for 

specialized proteins. 

A multi-dimensional evaluation framework confirms ProtSSN’s efficacy in structure-

driven mutation design, establishes sequence-structure-function correlations, and provides 

a reusable methodology for AI protein tool development. 



 

 

This work advances protein engineering from empirical trial-and-error toward a 

computational paradigm, with potential applications in enzyme catalyst design and 

therapeutic antibody development. 

Key words: ProtSSN; structure perception; decoupling attention; performance 

verification; artificial intelligence; protein mutation design 
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INTRODUCTION 

 

This study focuses on the artificial intelligence-driven protein design software 

ProtSSN. By integrating deep mutation scan data, protein secondary structure 

prediction, and solvent accessible surface area (SASA) correlation analysis, it 

systematically reveals its technical advantages, mechanism of action, and engineering 

application potential in mutation effect prediction. Studies have shown that ProtSSN 

achieves quantitative coding of geometric features of the protein microenvironment 

(such as hydrogen bond networks and hydrophobic cores) through a dual-modal 

collaborative pre-training framework (fusion of sequence semantics and three-

dimensional structure topology) and an equivariant graph neural network (EGNN), 

significantly improving the accuracy of mutation prediction. In the Protein Gym 

benchmark test, its prediction performance for single-point mutations (Spearman 

ρ=0.429) and multi-point mutations (ρ=0.550) is significantly better than that of 

traditional models, especially in the regions of regular secondary structures (α -helix, 

extended chain). Further research revealed that the solvent-accessible surface area 

(SASA) was significantly globally negatively correlated with the prediction error 

(weighted average ρ= -0.25). The prediction reliability was stronger in the high 

SASA region (>0.4), while the conformational synergy effect in the core region 

increased the complexity of the prediction. 

The relevance of this topic lies in the analysis of the structural mechanism of 

artificial intelligence protein mutation software. 

The main objectives include determining the performance advantages of 

ProtSSN in the prediction of mutation effects, establishing a quantitative connection 

between SASA values and prediction errors, and analyzing the relationship between 

the secondary structure and prediction accuracy. 

The methods include conducting performance benchmark tests of single-point and 

multi-point mutations on the Protein Gym dataset, conducting statistical analysis of the 

secondary structure distribution using SOPMA and DSSP, and performing Spearman 

correlation modeling of the prediction error relationship of SASA. 



 

 

The object of the study – ProtSSN. 

The subject of the study – Testing an AI-based protein design method. 

The scientific novelty lies in systematically studying the quantitative connection 

between AI-based mutation prediction and microenvironment characteristics, such as 

secondary structure rules and SASA. 

The practical significance of this research lies in its open-source software 

development, which promotes a paradigm shift in synthetic biology and biomanufacturing 

– from empirical trial and error approaches to computation-first strategies. 

This study demonstrates that ProtSSN can significantly enhance the screening 

efficiency of wet laboratory mutants, while reduce the cost of experimental trial and error, 

and enable the rapid design of therapeutic antibodies and industrial enzymes. The global 

negative correlation between SASA and the prediction error (weighted ρ=-0.25) provides 

an operational guideline for optimizing the stability of residue levels in protein engineering. 

Meanwhile, the analysis of the relationship between the secondary structure and the 

prediction accuracy also provides a direction for the future development of software.



 

Chapter I LITERATURE REVIEW 

 

1.1 Background of the Intelligent Development of Protein Design Software 

1.1.1 Limitations of Traditional Protein Design Approaches 

 

The traditional protein design method is based on classical molecular mechanics 

theory. Its core principle is to precisely calculate the interaction forces between atoms, such 

as electrostatic attraction and van der Waals forces, to construct mathematical models and 

thereby simulate the protein folding process and stable state. This method follows a 

fundamental assumption that the structure of natural proteins corresponds to the lowest 

stable state in the entire energy system. Therefore, protein design can be understood as 

finding the optimal three-dimensional structural arrangement scheme that minimizes the 

overall energy in a high-dimensional space composed of tens of thousands of atomic 

coordinates. However, this theoretical model based on thermodynamic equilibrium states 

has gradually exposed deeper problems when dealing with the dynamics and complexity of 

actual biological systems. 

From the perspective of physical modeling, the parametric system of the classical 

force field has essential simplification. Traditional tools break down protein-protein 

interactions into linear combinations of discrete energy terms such as van der Waals forces, 

electrostatic interactions, and hydrogen bonds. Although this "divide and conquer" strategy 

can reduce computational complexity, it sacrifices the quantum effects and dynamic synergy 

of many-body interactions. For example, the polarization effect of the hydrogen bond 

network shows dynamic fluctuation characteristics in real solutions, while the traditional 

model simplifies it as a static effect with fixed distances and angles. The instantaneous 

electron cloud distribution of the π-π packing interaction is approximated as a rigid 

geometric match, thereby ignoring the induced dipole interaction between the aromatic 

rings. These simplifications result in the energy function being unable to accurately describe 

the delicate balance of entropy-enthalpy compensation during the protein folding process, 

especially causing systematic deviations in the modeling of the flexible loop region and the 

solvent exposure interface1. 



 

At the level of computational complexity, protein design problems have been proved 

to belong to the mathematical category of NP-hard2. The Monte Carlo sampling and 

molecular dynamics simulation adopted by the traditional method essentially traverse the 

high-dimensional conformational space through random rows. With the increase in the 

number of mutation sites, the dimension of the conformational space shows an exponential 

expansion. The number of conformational combinations that need to be evaluated for a 

design task containing n mutation sites can reach 20 n  (20 amino acid possibilities), which 

makes the search for the global optimal solution computationally infeasible. Even if 

the enhanced sampling technique is introduced, the local minimum trap will still cause the 

algorithm to converge prematurely to the suboptimal solution. More crucially, the rough 

approximation of the energy function amplifies the error of conformational sampling. When 

the model performs optimization on the wrong potential energy surface, the input of 

computing resources may instead lead to an intensification of the deviation between the 

prediction results and the real biological system3. 

From the perspective of functional design, there is a mismatch between the theoretical 

goals of traditional methods and engineering requirements. Although the principle of 

minimizing free energy focuses on the structural stability of proteins, it does not incorporate 

key functional indicators such as catalytic activity and substrate specificity into the 

unified optimization framework. This single-goal-oriented design logic often leads to 

the contradictory phenomenon of "excessive stability and functional loss", that is, although 

the mutation scheme can improve thermal stability, it inhibits catalytic efficiency due to the 

rigidity of the active pockets. In addition, the processing ability of the physical model for 

the synergistic mutation effect is also limited. When the mutation sites are distributed in 

different domains, the nonlinear coupling of their long-range interactions is difficult to 

accurately describe through the simple superposition of energy terms. This limitation is 

particularly prominent in application scenarios such as industrial enzyme modification that 

require simultaneous optimization of multiple characteristics, thereby forcing researchers to 

rely on empirical trial and error and experimental iterations, deviating from the original 

intention of rational design.



 

The deep-seated theoretical predicament actually stems from the dynamic nature that 

life systems possess. The traditional way regards proteins as isolated thermodynamic 

systems, but ignores that in the cellular environment, the conformation of proteins fluctuates 

continuously and intermolecular interactions are frequent. Biological principles such as 

chaperone protein-assisted folding and post-translational modification regulation have not 

been effectively simulated in existing physical models. This static thinking mode leaves 

traditional methods inadequate when it comes to the functional adaptation requirements of 

proteins in the real biological environment, exposing the inherent contradiction between the 

theoretical system and the complexity of life. 

 

1.1.2 Opportunities for the Application of Artificial Intelligence Technology 

 

The field of protein mutation design is at a critical period of transformation from 

relying on experience to relying on data. The integration of artificial intelligence technology 

has opened up a brand-new path to overcome the drawbacks of traditional methods. Deep 

learning, by deeply mining the potential rules in a large number of protein sequences and 

structures, has broken the limitations of physical modeling in terms of computational 

efficiency and can also model complex biological systems from multiple dimensions. The 

core of this technological leap is the redefinition of the mapping logic of "sequence – 

structure - function": traditional tools rely on clearly defined energy functions and 

conformational sampling operations, while artificial intelligence, with the help of implicit 

feature learning processes, transforms protein design problems into pattern recognition and 

construction tasks in high-dimensional spaces. 

The development trajectory of existing protein design software clearly demonstrates 

the evolution of this technology. Early tools such as Rosetta Design constructed energy 

functions based on molecular mechanics principles and optimized mutation schemes 

through Monte Carlo sampling. However, their computational complexity increased 

exponentially with the number of mutations sites4. Take the design of industrial enzymes as 

an example. The traditional method requires thousands of CPU hours for the full 

combination analysis of five mutation sites, and the prediction accuracy of long-term 



 

synergistic effects is relatively low. With the breakthroughs of structure prediction tools 

such as AlphaFold5, generative AI models have begun to emerge. ProteinMPNN captures 

sequence evolution patterns through pre-trained language models and can generate stable 

mutation schemes within minutes6. The ESM series models utilize self-supervised learning 

to parse sequence-functional associations and can achieve an accuracy rate of over 80% in 

the task of functional annotation. However, these tools still have significant limitations. The 

lack of structural constraints in sequence models can easily lead to physically unreasonable 

designs, while pure structural models have difficulty capturing evolutionary conservation 

characteristics. 

Under this background, multimodal fusion has become a key direction for 

technological breakthroughs. The ProtSSN model developed by Shanghai Jiao Tong 

University7 innovatively integrates the three-dimensional structure information of proteins 

with sequence data for collaborative modeling. Its core innovation lies in the construction 

of a "structure-guided mutation effect prediction" paradigm. This model encodes the 

atomically level features of the local conformation with the aid of the Geometric Vector 

perceptron (GVP) and employs the decoupled attention mechanism to effectively achieve 

the dynamic balance between the sequence evolution pattern and the spatial physical 

constraints7. Compared with the sequence-dependent model, ProtSSN has significant 

advantages in the identification of catalytic active sites and the design cycle. This technical 

advantage is attributed to ProtSSN's unified modeling of the multi-level characteristics of 

proteins. From the hydrophobic effect of atomic spacing to the allosteric communication 

between domains, the model achieves the fusion cognition of cross-scale rules through 

hierarchical feature extraction, providing a more efficient and precise solution for protein 

mutation design. Moreover, in terms of model training, ProtSSN has pre-trained with a large 

amount of data to create a model with stronger applicability. ProtSSN combines the protein 

structure data predicted by AlphaFold with the sequence information in UniProt8 to build a 

system capable of analyzing protein characteristics across different scales. It can not only 

better cope with complex protein structures, but also, through special coding techniques, 

convert three-dimensional structural information into numbers that are convenient for 



 

calculation, greatly accelerating the calculation speed 

In the future, the application of artificial intelligence in the field of protein design will 

revolve around three major directions: First, build a more interpretable modeling system, 

and use technologies such as Grad-CAM to visualize the decision-making logic of the model 

and enhance the credibility of the prediction results; The second is to build a closed-loop 

system that deeply integrates dry and wet experiments, and achieve bidirectional 

optimization of experimental data and computational models through active learning 

strategies. The third is to explore multi-objective collaborative optimization algorithms to 

seek the optimal solution among contradictory indicators such as protein stability, catalytic 

activity, and substrate specificity. The open-source nature of ProtSSN and its outstanding 

performance in the Protein Gym9 benchmark test have provided significant support for the 

co-construction and sharing of the technical ecosystem within the field, accelerating the 

transformation of protein design from the traditional experience-driven model to a precise 

design paradigm dominated by data and algorithms. Inject new innovative impetus into 

cutting-edge fields such as synthetic biology and targeted drug development. 

 

1.2 Introduction to ProtSSN Software and Its Core Technological Breakthroughs 

1.2.1 ProtSSN Software Architecture and Function Positioning 

 

ProtSSN is an open-source multimodal protein language model jointly developed by 

Professor Hong Liang's team from Shanghai Jiao Tong University and the Shanghai 

Artificial Intelligence Laboratory. ProtSSN adopts a unique dual-modal collaborative pre-

training framework, deeply integrating protein sequence and structural information. This 

framework optimizes the current situation where protein sequence data is abundant but 

crystal structure data is relatively scarce, and constructs a funnel-shaped learning pipeline. 

In this architecture, the sequence encoder and the structure encoder complement each other. 

The sequence encoder inherits the parameters of pre-trained models such as ESM-2. 

Through learning from massive protein sequences, it can accurately analyze the coevolution 

laws in amino acid sequences, discover the hidden long-range dependencies in the 

sequences, and provide a solid sequence foundation for subsequent analysis. 



 

The construction of the structural encoder relies on the Geometric vector perceptron 

(GVP), whose function is to extract the spatial feature information at the atomic level of proteins. 

This module not only analyzes geometric parameters such as the Cα skeleton topology and side 

chain orientation, but also constructs residue maps through the K-nearest neighbor (kNN) 

algorithm, encoding the local conformation of proteins as discretized structural elements. This 

encoding mechanism can precisely capture the subtle features of protein structures, providing a 

crucial structural information basis for the study of protein functions. 

The adaptive fusion of the two modes relies on the dynamic routing algorithm, which 

can automatically optimize the weight ratio of the sequence mode and the structural mode 

according to the conformational rigidity characteristics of the target area. In the 

conformational flexible region, since the sequence information plays a dominant role in the 

function, the algorithm will enhance the influence of the sequence mode. In the 

conformational rigidity region, the weight of the structural mode will be prioritized for 

improvement. Through this dynamic adjustment, ProtSSN can fully leverage the advantages 

of each modality in various protein analysis scenarios, comprehensively and accurately 

understanding protein characteristics. 

The core function of ProtSSN is to accurately determine the possible impact of 

mutations on protein function by analyzing the overall distribution pattern of amino acids in 

protein sequences and fully considering the synergistic effects among amino acid sites. It 

can directly predict the effects of unknown protein variants in zero-shot scenarios without 

the need for pre-training specific protein data7. 

What is more worthy of attention is that ProtSSN, as an open-source software, not only 

discloses all models but also comes with detailed user manuals. This feature enables 

researchers to easily integrate it into various research processes, significantly lowering the 

technical threshold for protein data analysis while helping researchers more efficiently mine 

the value of data. It plays a positive role in promoting the overall development of the field 

of protein research.



 

1.2.2 Core Technology Breakthroughs and Theoretical Innovations 

 

The core of the technological breakthrough of ProtSSN software lies in the 

comprehensive innovation formed through the creative integration of multimodal 

information, the construction of an advanced model architecture system, and the 

introduction of cutting-edge algorithm support. 

Traditional protein characterization methods mostly focus on a single dimension of amino 

acid sequences. ProtSSN, however, innovatively integrates cross-modal information of protein 

sequences and three-dimensional structures. With the progress made in the field of structure 

prediction by deep learning tools such as AlphaFold, it is possible to obtain high-precision three-

dimensional protein models on a large scale and construct a brand-new multimodal analysis 

system. Given the close correlation between protein functions and their spatial configurations, 

microscopic structural features such as the connection mode of Cα atoms and the three-

dimensional arrangement of side chains directly reflect the energy distribution of molecular 

folding and potential action sites. This model overcomes the limitations of traditional single-

modal research by designing a sequence-conformation joint analysis module, achieving a 

comprehensive characterization of protein properties from multiple dimensions. It has 

significantly improved the accuracy of functional prediction and provided a multi-dimensional 

structural basis for in-depth research on the impact of protein mutations. 

ProtSSN adopts an innovative dual-channel feature extraction framework. Its 

sequence feature extraction module draws on the parameter initialization methods of 

advanced models such as ESM-2 to analyze the co-evolution law among amino acid residues 

in polypeptide chains, that is, biological evolution causes the positions of various residues 

in the primary structure of proteins to form mutually restrictive variation associations. These 

coevolutionary characteristics provide an important basis for functional prediction. The 

spatial feature extraction component adopts the geometric vector sensing technology to 

capture the three-dimensional conformational features at the atomic scale and transform the 

continuous spatial distribution into the representation of discrete structural units. This 

complementary architecture gives full play to the advantages of different data modalities. 

The introduction of the dynamic routing mechanism enables the system to autonomously 



 

adjust the fusion weights of the two features based on the stability of the local conformation. 

This adaptive strategy allows the model to intelligently adjust the utilization ratio of 

sequence and structural information when facing different structural characteristics and 

prediction tasks, in order to obtain more reliable prediction results. 

The technological breakthrough of ProtSSN is also inseparable from the application 

of cutting-edge algorithms. In the process of structural quantization, the software converts 

the complex three-dimensional structural information into computable discrete symbols 

through geometrically driven structural quantization technology, reducing the 

computational complexity while retaining the key characteristics of the structure.  

The application of the decoupled attention mechanism enables the model to 

dynamically balance the relationship between sequence and structural information when 

processing them, pay more flexible attention to the features of different regions, and 

effectively prevent the prediction deviation caused by uneven information processing. In 

addition, ProtSSN adopts a self-supervised learning strategy and conducts pre-training on a 

large-scale protein sequence database, thereby learning the general characteristics of protein 

sequences and structures, enhancing the generalization ability of the model, reducing the 

reliance on a large amount of labeled data, and further improving its adaptability and 

accuracy in different protein mutation prediction tasks. 

 

1.3 Significance and Research Contents of This Project 

1.3.1 Research Significance 

 

The transformation of protein design tools towards intelligence is the core challenge 

faced in the intersection of synthetic biology and computational biology. Because traditional 

protein design methods mainly rely on physical simulation and experimental trial and error, 

there are prominent problems such as low computational efficiency and difficulty in 

predicting the synergistic effect of multi-point mutations. This has largely restricted the 

research and development progress of practical application scenarios such as industrial 

enzyme modification and antibody drug research and development. This study takes the 

ProtSSN software developed by Professor Hong Liang's team from Shanghai Jiao Tong 



 

University as the research object. Through systematic testing and analysis methods, it 

verifies its technical advantages as a new generation of artificial intelligence protein design 

tool, which has important theoretical research value and practical application significance. 

This study innovatively proposes a systematic evaluation framework for protein 

multimodal characterization models in terms of theoretical methods. In view of the 

limitation that existing studies mostly focus on single-dimensional indicators such as 

prediction accuracy or operation speed, which are difficult to comprehensively reflect the 

practical application value of the model, a comprehensive evaluation system including key 

dimensions such as structural restoration degree, functional inference ability, and resource 

consumption efficiency is designed. The verification experiments carried out based on the 

Protein GYM standard dataset and combined with visualization analysis technology have 

confirmed the effectiveness of this evaluation paradigm. This theoretical innovation not only 

provides a reliable method for the performance verification of the ProtSSN model but also 

offers new ideas for the formulation of evaluation standards in the field of protein artificial 

intelligence research. 

This study verified in the technical implementation that the modeling strategy 

integrating the spatial conformation and sequence evolution characteristics of proteins has 

significant advantages.  ProtSSN, which integrates three-dimensional structural parameters 

and conservation analysis results, effectively improves the limitations of traditional methods 

in predicting local conformational dynamic changes. Experimental evaluation shows that 

this model performs excellently in residue variation prediction, improving the reliability of 

single-point and compound mutation prediction while significantly compressing the design 

cycle. This progress has brought about significant technological innovations in the field of 

biomedicine. It has certain application values in aspects such as shortening the R&D cycle 

in industrial enzyme design and precisely regulating molecular recognition characteristics 

and conformational stability in the field of antibody drug optimization. 

 



 

1.3.2 Research Content 

 

This study focuses on the ProtSSN protein intelligent design system developed by 

Professor Hong Liang's team from Shanghai Jiao Tong University, and constructs a multi-

dimensional evaluation framework to mainly examine its performance in residue mutation 

detection and conformational stability prediction. The study selected biocatalcatalysts with 

industrial application value and clinically relevant therapeutic proteins as analytical 

samples, and established a standardized testing environment based on an internationally 

recognized protein database. The aim was to systematically compare the performance 

differences between this artificial intelligence platform and traditional computing tools and 

evaluate its transformation value in practical biotechnology applications. 

The research first obtained the protein structure and mutation information from the 

Protein Database (PDB) and Protein Gym. During the data preparation stage, the PDB file 

of the protein and the mutation information in the dataset were organized into standardized 

inputs. Submit design tasks in batches and obtain prediction results through the correct input 

position of the ProtSSN software. 

For the prediction results, after verifying the mutation prediction accuracy of the ProtSSN 

software through Spearman correlation analysis using statistical methods, this study analyzed the 

correlations between the secondary structure of the protein and the SASA aspect and the software 

prediction results respectively, thereby clarifying the influence of the secondary structure and 

SASA on the software prediction and the internal reasons. 

The core significance of this study lies in establishing an economically efficient 

protein design evaluation system. By using open computing tools, it breaks through the 

limitation of high investment in traditional experiments and provides a feasible solution for 

the research environment with tight funds. Through the development of a unified data 

processing template and an intuitive result presentation method, a repeatable research 

framework suitable for the evaluation of intelligent protein design systems is constructed. 

The lightweight designed ProtSSN platform can complete operations under conventional 

computer configuration and the processing time of a single prediction task is controlled 

within 120 minutes, effectively lowering the technical threshold of protein modification 



 

research. This work not only confirms the practical value of artificial intelligence technology 

in the field of protein engineering, To more deeply reveal the intrinsic connection between 

amino acid sequences, spatial conformations and biological functions, and provide new 

technical support for accelerating the development process of industrial biocatalysts and 

therapeutic proteins. 

 

Summary of the chapter I 

 

1. Traditional protein design methods face significant technical bottlenecks. They rely 

on physical and chemical principles and experimental trial and error, and have core problems 

such as high computational complexity, long design cycle, and low success rate. Especially 

in complex structures (such as dynamic interaction networks) and functional design 

scenarios, they perform poorly and are difficult to meet the requirements of precise 

engineering. 

2. Artificial intelligence technology has brought revolutionary breakthroughs to 

protein design. Through machine learning and deep learning algorithms, the hidden 

correlation rules among sequences, structures and functions can be efficiently analyzed, 

significantly improving the accuracy of mutation prediction (such as site synergy effect 

modeling) and computational efficiency (such as high-throughput design), promoting the 

transformation of protein engineering from empirical trial and error to a data-driven 

paradigm. 

3. The ProtSSN software achieves a multi-dimensional performance leap through 

technological innovation. Based on a dual-modal collaborative pre-training framework (sequence 

semantics + three-dimensional structure topology) and a lightweight architecture (110 million 

parameters), the Spearman correlation coefficients for single-point and multi-point mutation 

prediction in the Protein Gym benchmark test reach 0.429 and 0.550 respectively. Go beyond the 

traditional model. This software innovatively integrates geometric coding with equi variable 

graph neural networks (EGNN), precisely capturing structural disturbances such as hydrogen 

bond breakage and hydrophobic core destruction, providing efficient solutions for complex 

scenarios (such as enzyme active site optimization). 



 

4. This research has laid the theoretical and application foundation for the intelligent 

design of proteins. This study will analyze the negative correlation of SASA- prediction 

error, providing a quantitative basis for the optimization of residue stability, and the analysis 

of the relationship between secondary structure and prediction accuracy provides a direction 

for software optimization. The subsequent chapters will conduct an in-depth analysis of the 

structure-function correlation mechanism. 



 

Chapter II 

OBJECT, PURPOSE, AND METHODS OF THE STUDY 

 

2.1 Research basis and theoretical framework 

 

A very important part of protein function prediction lies in establishing a high-precision 

association model between amino acid sequence variations and biological functions. Traditional 

methods are often limited to single-dimensional features. Sequence models rely on evolutionary 

conservation but ignore the dynamics of three-dimensional structures. Although structural 

models can analyze local geometric constraints, they have difficulty capturing long-range 

synergy effects. This study conducted systematic tests based on the ProtSSN software. This 

software realizes the joint modeling of multi-scale features of proteins by integrating semantic 

encoding and geometric topological representation, providing a new theoretical paradigm for the 

prediction of mutation effects. 

The theoretical innovation of ProtSSN stems from the systematic integration of the 

sequence-structure-function relationship of proteins. Its semantic encoding module is based on a 

large-scale protein sequence library and uses the evolutional-Scale Language Model (ESM-2) to 

extract the co-evolutionary patterns among residues. This module captures long-range 

dependencies across sequences through Masked Language Modeling (MLM), such as the co-

conservation characteristics of catalytic sites or allosteric regulatory regions. The geometric 

coding module takes the Equivariant Graph Neural Network (EGNN) as the core. By 

constructing the residue space proximity graph to dynamically update the node coordinates and 

features, it accurately quantifies the perturbation effects of the three-dimensional 

microenvironment such as hydrogen bond networks and hydrophobic accumulation. The 

synergistic effect of the two is achieved through the gated attention mechanism, dynamically 

balancing the feature weights in different functional scenarios. For example, it enhances the 

geometric sensitivity of core hydrophobic interactions in thermal stability prediction and 

strengthens the semantic constraints of active pockets in catalytic activity evaluation. 

This study first replicated some of the test experiments involved in the research on 

ProtSSN software by Tan Yang et al.7 in 2023. The optimized k20_h512 model 



 

configuration was adopted strictly in accordance with the literature content. The evaluation 

dataset was selected from 217 proteins in the replacement module of the Protein GYM 

database. It covers a wide range of functional categories such as enzyme catalysis and 

molecular interaction. The predictive performance was quantified by Spearman's rank 

correlation coefficient (Spearman's ρ), which evaluated the accuracy of mutation ranking 

by analyzing the monotonicity association between the predicted values of the model and 

the experimentally determined DMS score. The above-mentioned experimental 

reproduction is used to verify the prediction accuracy of the ProtSSN software, and the 

results should be consistent with the content of the literature. 

In order to further analyze the adaptability of the model to different mutation patterns, 

this study innovated on the basis of the original experiment and divided the test set into 

two categories according to the nature of mutations: the single-point mutation system 

(148 proteins) and the compound mutation system containing multi-point mutations (69 

proteins).  

The former focuses on the independent effect of local residue replacement, while the 

latter involves a synergistic effect. ProtSSN explicitly models the long-range associations 

among residues through the global message passing mechanism of graph neural networks. 

Theoretically, it can more accurately capture the synergistic perturbations of protein 

conformations caused by multi-point mutations. In addition, by integrating DSSP 

(Dictionary of Secondary Structure of Proteins) with statistics for combined analysis of 

secondary structures, SOMPA algorithm for predicting secondary structures (such as 

α-helix and β-fold), and solvent-accessible surface area (SASA) calculated by DSSP,  

This study further explores the relationship between the secondary structure and the 

accuracy of software prediction, as well as the correlation between the software prediction 

error and the SASA value. The construction of this multi-level analysis framework provides 

systematic theoretical support for revealing the prediction mechanism of ProtSSN and its 

application in directed evolution. 

 



 

2.2 Experimental Materials and Methods 

2.2.1 Data Sources and Processing 

 

Protein Gym is a standardized evaluation platform in the field of protein variation 

prediction. It integrates deep mutation scanning experimental data and clinical variation 

annotation information, providing a unified performance evaluation benchmark for different 

prediction algorithms. Its dataset adopts a multi-dimensional classification system including 

mutation forms (point mutation/frameshift mutation), data sources (DMS continuous 

values/clinical binary labels), and training modes (unsupervised/supervised learning). It 

covers key functional indicators such as enzyme activity, molecular recognition, and 

structural stability, and involves various biological source proteins such as humans, 

microorganisms, and viruses. Each data unit records in detail the mutation sites, 

experimental measurement values, and related meta-information. This platform supports 

two main evaluation modes: zero-shot prediction for assessing the generalization 

performance of models and supervised learning suitable for parameter optimization. It 

includes the performance comparison results of over 70 benchmark models to form an 

objective algorithm evaluation system. Its open-source feature is manifested in providing 

complete data acquisition guidance and automated analysis tools, and making up for the 

insufficiency of standardized evaluation in this field through a standardized evaluation 

framework. It has built an important bridge for the development of computational models, 

the design of experimental schemes and interdisciplinary research. 

This experiment uses the Protein Gym dataset and selects the dataset of mutation 

effects of the replacement mutations as the benchmark. The dataset contains multiple 

mutation samples, and each sample provides data information such as mutation points, 

DMSscore, and DMSscore_bin.  

To verify the prediction accuracy of ProtSSN, the ProtSSN software is run using 

Tencent Cloud’s high-performance GPU and six-core processor.  Input the three-

dimensional structure file of the protein (in PDB format), the FASTA file of amino acid 

sequence information, and the CSV file covering the mutation point information of the 

protein. Output the prediction results of the corresponding mutators and compare the results 



 

generated by running under different models. 

The data processing steps are as follows: 

(1) According to the prompts in the database, screen and retain the valid data for 

this study; 

(2) Uniformly adjust the PDB file format to ensure that the atomic coordinates of 

all structure files are consistent with the residue numbers; 

(3) The predicted values output by ProtSSN and the deep mutation scan 

experimental data were classified and organized by protein type to form a one-to-

one corresponding data table for subsequent statistical analysis. 

 

2.2.2 Experimental Verification Methods 

 

1. Total processing of experimental data: 

(1.1) Through the Protein Gym database, the mutation and structural information of 

a total of 217 proteins with their replacement mutation types were collected and the data 

were organized one by one according to the original file names. 

(1.2) Input the organized files, including the PDB file and the CSV file containing the 

mutation information, into the corresponding folder of the ProtSSN software, run the shell 

script, obtain the prediction result, and output the result in CSV file form. 

By calculating the Spearman's correlation coefficient (Spearman's ρ), the 

consistency between the predicted data of ProtSSN and the experimental data of deep 

mutation scanning was analyzed. 

Correlation analysis: Analyze Spearman's ρ, and the formula is: 

 

                ρ = 1 –  [(6 Σd2) / [n • (n2 – 1)]]                                           (2.1) 

 

Among them, di is the difference between the predicted ranking and the 

experimental ranking of the i-th mutant, and n is the total number of samples.  

2. Data analysis and processing methods for the experimental reproduction part: 

(2.1) The calculation process was constructed based on Python 3.9. The target 



 

variables DMSscore and ProtSSN_k20_h512 (predicted value of protein mutation) were 

extracted from 217 CSV files using the Pandas (v1.3.5) library. The remaining fields 

were excluded because they were irrelevant to the research objectives. After reading 

the data through pd. read_csv, the dropna method is used to clear the rows containing 

missing values (NaN), and it is verified that the amount of valid data in each file is 

≥ 3 to ensure statistical reliability (all files meet the conditions and no data is skipped). 

(2.2) The Spearman's correlation coefficient (Spearman's  ρ ) is calculated through 

the Spearman R function of SciPy (v1.7.3) (Formula 2-1). The histograms and kernel 

density estimation (KDE) curves were plotted using Seaborn (v0.11.2) and Matplotlib 

(v3.5.0). The mean line of the red dotted line and the μ ± σ interval (0.304-0.630) were 

marked, and the PDF vector diagram was output at a resolution of 300 dpi. 

3. Partial data analysis and processing methods for single-point and multi-point 

mutations: 

(3.1) The analysis process is constructed based on Python 3.9. Firstly, two columns 

of data, DMSscore and ProtSSN_k20_h512, are extracted from the CSV file. The 'pd. 

read_csv' of the Pandas library is used for reading, and the rows containing missing values 

are cleared through the 'dropna' method. Meanwhile, filter the datasets with an effective 

sample size less than 3. Subsequently, the Spearman rank correlation coefficients of single-

point mutations (148 datasets) and mixed mutations (69 datasets) were calculated using the 

'spearman' function of the SciPy library to reduce outlier interference by a non-parametric 

method, and the mean (μ), median (M), and standard deviation (σ) of the correlation 

coefficients were calculated through NumPy. 

(3.2) To present the distribution characteristics, the histogram and kernel density 

estimation (KDE) curve were plotted using Seaborn and Matplotlib. The mean line was 

marked with a red dotted line in the figure, and the μ±σ interval range was marked. The 

output was a PDF vector diagram of 300 dpi. 

 



 

2.2.3 Methods for processing experimental results 

 

This chapter of the study first reproduced some experiments related to ProtSSN 

literature. The k20_h512 model of ProtSSN was used to comprehensively analyze the 217-

substitution mutation information contained in the Protein Gym database, and the average 

Spearman correlation coefficient was obtained as 0.46726940061418487. Then, on the basis 

of the previous work, innovations were made and analyses were carried out according to the 

mutation types (single-point mutation, multi-point mutation). Figure 2.1 shows the 

Spearman correlation analysis graph of the predicted values obtained by the software after 

analyzing the mutation information of 217 proteins and the data from the deep mutation 

scanning experiment. 

 

 

Figure 2.1 Spearman correlation histogram of predicted values  

with deep mutation scan experimental data 

 

In this study, the protein information of the Protein Gym database was grouped and 

tested according to mutation types (single-point mutations and multi-point mutations). A 

total of 148 proteins containing only single-point mutations in the mutation file were 



 

selected, and a total of 69 proteins containing both single-point mutations and multi-point 

mutations were selected. The k20_h512 model under the ProtSSN framework was adopted 

to predict the mutation effects of the two types of proteins respectively. The consistency 

between the prediction results and the experimental data was quantified through the 

Spearman correlation coefficient, and then the performance of the model in different 

mutation scenarios was analyzed.  

Figure 2.2 shows the Spearman correlation analysis graph between the predicted 

values and the actual values of 148 file software with only single-point mutations.  

 

 

 

Figure 2.2 Spearman correlation histogram of single-point mutation 

 

It can be seen from the graph that the average Spearman correlation coefficient of the 

model is 0.429, and the correlation coefficient is concentrated in the range of 0.28-0.58, 

with the peak located in the range of 0.4-0.5. It indicates that it has moderate accuracy in 

predicting the mutation effect of a single amino acid site and can effectively capture the 



 

monotonic association between the mutation site and the function or stability of the protein. 

This single-point performance stems from the model's deep encoding of the semantic 

information of protein sequences - extracting the long-range dependencies of amino acid 

sequences through pre-trained language models, combined with the geometric 

characteristics of the local microenvironment, to analyze the perturbation effect of single-

point mutations on the interaction between active centers and domains. 

Figure 2.3 shows the Spearman correlation analysis of 69 files that contain both 

single-point and multi-point mutations. It can be seen from the figure that the Spearman 

correlation coefficient is 0.550, and the mixed mutations are distributed from 0.39 to 0.60, 

showing a right-biased trend, which reflects the superiority of ProtSSN in dealing with 

complex mutations. 

 

 

 

Figure 2.3 Contains the Spearman correlation histograms of single-point  

and multi-point mutations 



 

 

This phenomenon reflects the model's ability to capture the synergistic effects of 

multiple mutation sites. That is, by modeling the spatial dependence between residues 

through the rotational translation isotropic graph neural network (EGNN), the nonlinear 

interactions between amino acid sites, such as domain cooperative folding and hydrogen 

bond network reconstruction, and other higher-order effects, can be effectively captured. 

For example, in the prediction of thermal stability-related mutations, multi-point 

mutations often enhance stability by optimizing the hydrophobic interactions or salt 

bridge networks within proteins, and the model's analytical ability for such synergistic 

effects directly improves the prediction accuracy in complex mutation scenarios. 

The dual-modal coding framework of ProtSSN integrates sequence semantic 

embedding and three-dimensional structure topological coding, which is the core 

mechanism of its performance advantage. At the sequence level, the deep semantic 

representations extracted by pre-trained language models (such as ESM-2) can capture the 

grammatical rules and functional associations of amino acid sequences. At the structural 

level, graph neural networks supplement spatial position information for the geometric 

modeling of the protein microenvironment. Especially in complex mutations, structural 

information is crucial for predicting stability (such as Δ Tm, Δ G) and functional 

synergies. Furthermore, the model's zero-shot prediction ability enables it to demonstrate 

generalization in unseen proteins and mutation types, allowing it to handle common "cold 

start" issues in wet experiments, such as the mutation design of novel enzymes or viral 

proteins, without the need for additional labeled data. 

From the perspective of practical application value, the stable performance of the 

model in single-point mutations and its outstanding performance in complex mutations 

provide efficient computational guidance for directed evolution experiments. The Gaussian 

Pearson coefficient indicates that it can effectively narrow the screening range of mutants 

and reduce the cost of experimental trial and error, especially suitable for scenarios such as 

optimizing binding affinity and improving the thermal stability of industrial enzymes in 

antibody engineering. 



 

The performance of ProtSSN in single-point and multi-point mutations further 

validates the necessity of sequence-structure co-coding. Its ability to capture the synergistic 

effects of complex mutations provides key technical support for artificial intelligence-driven 

protein engineering. Future research can further optimize the model's ability to 

characterize the dynamic interaction of long-distance domains, and expand the training 

data by combining a wider range of species and structural types, thereby enhancing its 

application potential in special scenarios such as the prediction of viral protein variations. 

 

Summary of chapter II 

 

1. The performance verification of ProtSSN is based on the Protein Gym dataset and 

structural feature analysis. Its Spearman coefficient (0.429/0.550) for single-point/multi-

point mutation prediction is significantly better than that of the traditional model. The 

EGNN network accurately models structural disturbances such as hydrogen bond breakage, 

and the computational efficiency is significantly improved. 

2. The experimental methods and verification system adopt strict data processing 

techniques and verification methods to ensure the reliability and repeatability of 

performance evaluation. 

3. The experimental results show that ProtSSN performs significantly better than 

traditional methods in protein structure prediction and functional design, and quantitative 

analysis clarifies its technical advantages. 

4. The computational efficiency and accuracy of the software have been verified 

through experiments, supporting its practical application in protein engineering, such as 

reducing the cost of experimental trial and error and accelerating the mutant screening 

process.



 

Chapter III EXPERIMENTAL PART 

 

3.1 Overview of Protein Secondary Structure 

 

The secondary structure of a protein is a local spatial conformation formed by the 

backbone of the polypeptide chain through hydrogen bonding. It is a key level connecting the 

primary sequence with the tertiary three-dimensional structure, and its conformational 

characteristics directly affect the stability, functional activity, and response pattern to mutations 

of the protein. The structure at this level mainly includes α -helix, extended strand (the basic unit 

that constitutes β-folding) and random coil. Each conformation is formed through specific 

hydrogen bond patterns and amino acid sequence tendencies. And it plays a core role in the 

folding, functional realization and evolutionary adaptation of proteins10. 

The α -helix is one of the most common regular secondary structures, formed by 

the right-handed helix of the main chain atoms, and a hydrogen bond is formed between the 

carbonyl oxygen (C=O) of the i-th residue and the amino hydrogen (N-H) of the i-4th 

residue, creating a tight helical conformation. Its stability depends on the accumulation of 

hydrophobic residues (such as leucine and isoleucine) in the core region, as well as the 

spatial compatibility of side chain groups, often forming the domain core or 

transmembrane region of proteins, providing rigid support for functional sites. The 

extended chains form β-folded sheets through hydrogen bonds of the main chains of 

multiple peptide chains, which are divided into two types: parallel and antiparallel. Their 

stability stems from the alternating arrangement of hydrophobic groups on the side chains 

and van der Waals interactions between the sheets, constituting an important component of 

the rigid framework of proteins and commonly found in regions such as immunoglobulin 

domains and catalytic cores of enzymes. Irregular coiling is an irregular conformation 

lacking periodic hydrogen bonds, which endowing proteins with flexibility. It is mostly 

distributed in domain connection regions, ligand binding pockets, or active centers of 

enzymes, mediating protein-protein interactions or functional regulation through dynamic 

conformational changes. 



 

The biological functions of secondary structures are closely related to their 

conformational characteristics. Regular structures ( α -helical, extended chains) form the 

structural basis for proteins to resist thermal denaturation and chemical disturbances 

through stable hydrogen bond networks and hydrophobic interactions. Their integrity 

directly affects the melting point temperature (Tm) and folding free energy (Δ G) of 

proteins. For example, the hydrophobic packing of the α-helical core and the β-folded 

sheets of the extended chains provide structural rigidity for proteins, while the flexibility 

of irregular curling allows conformational changes at functional sites, such as induced fit 

when enzymes bind to substrates or allosteric activation of signal proteins.  

This hierarchical characteristic of structure-function makes the secondary structure 

a key sensitive area for mutation effects. Mutations occurring in regular structures are prone 

to disrupt stable hydrogen bonds or hydrophobic interactions, resulting in a decrease in 

thermodynamic stability or functional abnormalities. However, mutation effects in irregular 

curling are more related to local flexible changes. 

In protein engineering and the prediction of mutation effects, the precise analysis of 

secondary structures is an important prerequisite for understanding the influence of 

mutations. The ordered conformations of α-helical and extended chains provide 

quantifiable structural features for the computational model, such as hydrogen bond density 

and hydrophobic contact area, while the dynamic characteristics of irregular curling pose 

challenges to the flexible conformation modeling of the model.  

This chapter focuses on the basic concepts and conformational characteristics of 

secondary structures. On this basis, combined with the prediction data of the ProtSSN 

model in the previous study, it deeply analyzes the correlation between the distribution of 

secondary structures and the accuracy of mutation prediction, reveals the differential 

mechanism between regular structures and irregular curling in mutation responses, and 

provides theoretical support for the design of proteins targeting secondary structures. 



 

3.2 Research Methods 

 

1. Research method of secondary structure correlation analysis based on: 

(1.1) Collect protein data from the Protein GYM database. Based on the CSV file 

results output in Chapter One and the Secondary structures of Proteins analyzed through 

DSSP (Dictionary of Secondary Structure of Proteins), correspond them one by one 

according to the location information. Integrated into one dataset (combined_data.csv 

file), this file only retains single-point mutations among 217 proteins, and multi-point 

mutations are excluded. Table 3.1 shows the secondary structure identifiers and structural 

characteristics contained in DSSP, which are used for the subsequent result analysis. 

 

Table 3.1 List of DSSP Secondary Structure Type Identifiers 
 

 

Secondary 

structure type 

Identifier Structural  

characteristics 

α -helix H 

Common helical structures maintain stable 

regular hydrogen bonds between atoms in the 

main chain 

3₁  𝜎-helix G 

Similar  to  the  α-helix, every three amino acid 

residues form one helix, and ten atoms participate 

in the hydrogen bond ring 

π-helix I 
Relatively rare, every five amino acid residues 

form one helix 

Extension chain E 

For a- part of the β-folded structure, the 

peptide chain extends in a sheet-like form, and 

the hydrogen bonds between the chains are 

maintained 

β-bridge B 
The individual bridge structure in the β-fold sheet 

represents the hydrogen bond in the β-fold 

Turn the corner T 
Connect different secondary structural units to 

change the direction of the peptide chain 

Bend S 

High curvature, not dependent on hydrogen bond 

classification, reflecting the local conformation of 

the peptide chain 

Random curling - Loose peptide chain regions with irregular 

secondary structures 



 

(1.2) The experiment was based on the integrated dataset (combined_data.csv), 

including key fields such as mutation sites, secondary structure types, predicted scores, and 

experimental measurement values. First, perform data cleaning to eliminate the samples with 

missing Secondary_Structure, Prediction_Score, and DMS_Score to ensure data integrity. 

Calculate the absolute prediction error (Prediction_Error = |Prediction_Score - DMS_Score|) 

for valid samples, and set are a sonable range threshold for DMS_Score ∈ [0,1] to eliminate 

the interference of experimental measurement outliers. 

(1.3) Based on the Secondary_Structure field, the data is divided into structural subsets 

such as H (α-helix), E (β-collapse), T (rotation Angle), etc. Non-parametric statistical tests 

are performed on each subset, that is, the monotony correlation between the score and the 

experimental value is quantitatively predicted through Spearman's rank correlation coefficient 

(ρ). The p-value was obtained by using the two-sided hypothesis test to evaluate the 

statistical significance. To ensure the reliability of the analysis, only the secondary structure 

categories with a sample size of ≥5 is retained. 

(1.4) Reveal the correlation pattern between structural features and prediction 

performance by comparing the charts: Figure 3.1 is a bar chart arranged in 

descending order of ρvalues. The viridis color level mapping correlation coefficient 

intensity is used, and the positive and negative correlations are distinguished by the dotted 

line with y=0. Figure 3.2 is a box plot of synchronous sorting. The Set2 color system is 

used to display the distribution of prediction errors, and outliers are hidden to highlight 

the characteristics of the main data. Both graphs have standardized coordinate axis ranges 

(ρ∈ [-1,1], Prediction_Error∈ [0,1]), and visual rendering is achieved through 

Matplotlib 3.6 to ensure the rigor and interpretability of the result presentation. 

2. Research method for Secondary Structure correlation Analysis Based on SOMPA: 

(2.1) Mutation data of 217 proteins collected from the Protein GYM database. 

According to the results of Chapter Two, proteins with extremely high and extremely low 

correlation coefficients between the predicted values of ProtSSN and the Spearman coefficient 

of DMSscore were selected, and the mutation sites and protein structures were recorded.



 

(2.2) Use the SOPMA tool to predict the secondary structure of the protein amino 

acid sequence, and determine the distribution range and proportion of -helices, extended 

chains and random coiling. 

(2.3) Compare and analyze the SOPMA and ProtSSN results (the prediction results 

required for this chapter have been obtained in the experiments of Chapter Two), and 

analyze the correlation between the prediction accuracy and the secondary structure 

through the proportion of different types of secondary structures. 

(2.4) Verification and Discussion: Discuss the correlation mechanism in 

combination with structural biology knowledge and draw conclusions. 

 

3.3 Results and Analysis 

3.3.1 Correlation Analysis of Secondary Structure Based on DSSP 

 

This study adopts the above-mentioned methods Obtain the 

"Prediction-actual Correlation by Secondary Structure" (Figure 3.1) and the "Prediction 

Error Distribution by Secondary The two charts "Structure" (Figure 3.2) analyzed the 

predictive performance of the model under different types of protein secondary structures.  

In Figure 3.1, we calculated the Spearman correlation coefficient (Spearman ρ) 

between the predicted values and the actual values under different protein secondary 

structure types (B, H, -, G, T, S, I, E). The data show that the correlation coefficients of each 

secondary structure type are generally close to 0. Compared with the ideal strong correlation 

situation, the degree of correlation between the predicted values of the model and the actual 

values in this study is relatively weak. It is speculated that this might be due to the retention 

of only single-point mutations, insufficient data volume, and the possible existence of 

special mutations.  

Among various secondary structures, the correlation coefficients of β -bridge 

(B), α-helix (H), and random curl (-) are relatively high, indicating that in these two 

structures, the consistency between model predictions and actual situations is relatively 

better than in other structures. To a certain extent, this reflects that these two structures are 

relatively easier to be captured by the model in terms of mutation laws. 



 

The structures of 310-helix (G), rotation Angle (T), curvature (S), π-helix (I), and 

extension chain (E) have lower correlation coefficients and approach 0, indicating that under 

these secondary structure types, the accuracy of predicting mutations by the model has an 

extremely low correlation with the actual situation. It might be due to the complexity of 

these structures or the characteristics of the data that the model has a relatively high 

difficulty in learning such mutation patterns. 

 

 

Figure 3.1 Correlation analysis of predicted and actual values 

under the secondary structure 

 

Figure 3.2 presents the distribution of prediction errors under each secondary 

structure type in the form of a box plot. The median prediction errors of different secondary 

structures are mostly concentrated between 10 and 15. From the box length and whisk length 

of the box plot, there are differences in the degree of data dispersion among different 

secondary structure types. The boxes of β-bridge (B), α-helix (H), and random curl (-) 

are relatively short, and the whisk lengths are also relatively short, indicating that the 

prediction error data under this structure type is relatively concentrated, and the stability of 

the model's prediction error is better. The boxes and whiskers of other structures are 

relatively long, indicating that the prediction error data is more dispersed. The fluctuation 



 

of the prediction error of the model under this structural type is large, and the stability is 

poor. Although there are certain differences in the degree of data dispersion among different 

structural types, the overall fluctuation range is relatively limited. Compared with 

the more ideal error distribution in other related studies, there is still room for optimization 

in the error level in this study. 

 

 
 

Figure 3.2 Distribution of prediction errors under -2 secondary structure  

 

 

3.3.2 Correlation Analysis of Secondary Structure Based on SOMPA 

 

To make up for the deficiencies of the above-mentioned experiments, this part of the 

study focused on the secondary structure distribution analysis of the top 4 high-accuracy 

predicted proteins and the bottom 4 low-accuracy predicted proteins in the Spearman 

correlation coefficient of the ProtSSN model in the Protein Gym benchmark through the 

SOPMA tool.  

Focus on three conformations: α-helix, extension chain (β-folded basic 

conformational unit), and random curl, and analyze the quantitative relationship between the 

predictive performance of ProtSSN and the characteristics of the secondary structure. The 

proportion of secondary structures of each protein in the following text is directly analyzed 



 

by SOMPA software. The Spearman correlation coefficient reflected in the following study 

is from the relevant experimental results in Chapter ІІ. 

 

(1) Protein part with low Spearman correlation coefficient 

 

In the secondary structure of A0A1I9GEU1_NEIME_Kennouche_2019 (Figure 3.3), 

the α-helix accounts for 28.57% (46 amino acids), the extended chain accounts for 11.80% 

(19 amino acids), and the irregular coiling accounts for 59.63% (96 amino acids). 

 

 

Figure 3.3 A0A1I9GEU1_NEIME_Kennouche_2019 ProtSSN mutation predicted  

Spearman rank correlation coefficient 0.03539592125272095 

 

In the secondary structure of I6TAH8_I68A0_Doud_2015 (Figure 3.4), the α-helix 

accounts for 44.78% (223 amino acids), the extended chain accounts for 9.04% (45 amino 

acids), and the irregular curl accounts for 46.18% (230 amino acids).



 

 

Figure 3.4 I6TAH8_I68A0_Doud_2015 ProtSSN mutation predicted  

Spearman rank correlation coefficient: 0.1470226068222732 

 

In the secondary structure of KCNE1_HUMAN_Muhammad_2023_expression 

(Figure 3.5), the α-helix accounts for 37.21% (48 amino acids), the extended chain 

accounts for 8.53% (11 amino acids), and the irregular curl accounts for 54.26% (70 

amino acids). 

Figure 3.5 Spearman rank correlation coefficient for prediction of ProtSSN  

mutation in KCNE1_HUMAN_Muhammad_2023_expression: 0.070158095359



 

In the secondary structure of TADBP_HUMAN_Bolognesi_2019 (Figure 3.6), 

the α-helix accounted for 12.56% (52 amino acids), the extended chain accounted 

for 15.9% (66 amino acids), and the irregular coiled-up accounted for 71.50% (296 

amino acids). 

Figure 3.6 Spearman rank correlation coefficient for prediction of 

TADBP_HUMAN_Bolognesi_2019 ProtSSN mutation: 0.054450226965378754 

 

(2) Gaussian Pilman correlation coefficient Protein part: 

 

In the secondary structure of A4GRB6_PSEAI_Chen_2020 (Figure 3.7), the α-

helix accounted for 31.58% (84 amino acids), the extended chain accounted for 20.68% 

(55 amino acids), and the irregular coiling accounted for 47.74% (127 amino acids). 

In the secondary structure of BLAT_ECOLX_Jacquier_2013 (Figure 3.8), the α-helix 

accounts for 40.56% (116 amino acids), the extended chain accounts for 13.64% (39 amino 

acids), and the irregular curl accounts for 45.80% (131 amino acids). 

In the secondary structure of HCP_LAMBD_Tsuboyama_2023_2L6Q (Figure 3.9), the 

α-helix accounts for 58.18% (32 amino acids), the extended chain accounts for 16.36% (9 amino 

acids), and the irregular coiling account for 25.45% (14 amino acids).



 

 

 

Figure 3.7 A4GRB6_PSEAI_Chen_2020 ProtSSN mutation predicted  

Spearman rank correlation coefficient: 0.7179293092233868 

 

 

 

Figure 3.8 BLAT_ECOLX_Firnberg_2014 ProtSSN mutation predicted  

Spearman rank correlation coefficient: 0.7295504153600589 

 

 



 

Figure 3.9 Spearman rank correlation coefficient for mutation prediction of 

BLAT_ECOLX_Jacquier_ 2013 ProtSSN: 0.6916445490953721 

 

In the secondary structure of HCP_LAMBD_Tsuboyama_2023_2L6Q (Figure 

3.10), the α-helix accounts for 58.18% (32 amino acids), the extended chain accounts 

for 16.36% (9 amino acids), and the irregular coiling account for 25.45% (14 amino 

acids). 

 

Figure 3.10 Spearman rank correlation coefficient for mutation prediction of 

HCP_LAMBD_Tsuboya ma_2023_2L6Q ProtSSN: 0.6867574588819246



 

Conformational prediction based on SOPMA shows that the highly accurate predicted 

mutation sites with a Spearman rank correlation coefficient of 0.65 or above are mostly 

distributed in the α -helix and extension chain regions, which is higher than the irregular 

curl. It is speculated that this distribution difference is correlated with the stability 

characteristics of the regular structure: The α -helix forms a tight hydrophobic core through 

the main chain i and the hydrogen bond at the i+4 position, while the extension chain 

maintains rigidity by the alternating arrangement of hydrogen bonds between layers and 

hydrophobic side chains. The integrity of both is highly sensitive to mutations. ProtSSN 

extracts the helix/extension chain formation tendency in the sequence through the pre-

trained language model (ESM-2), and combines the equivariant graph neural network 

(EGNN) to encode the geometric features of the residue microenvironment, achieving 

precise analysis of regular structural mutations. 

 

Summary of this part of the chapter III 

 

This chapter studies and analyzes the deep correlation between the characteristics of 

secondary structures and the predictive performance of the ProtSSN model. The results 

show that the Spearman correlation between the predicted values and experimental 

values of regular structures such as β-bridge (B) and α-helix (H) is significantly higher than 

that of complex conformational regions (such as π-helix, rotation Angle, etc.). The 

speculative model has a stronger feature extraction ability for the geometric constraints and 

thermodynamic stability of regular structures. This advantage may stem from the coupling 

effect of sequence tendencies, spatial steric hindrance and energy changes within the regular 

structure, providing modellable physicochemical laws for deep learning models. 

The analysis of prediction errors further supports the above conclusion. The error 

distribution of the regular structure is concentrated (interquartile range of the box <5), while 

the prediction stability of the complex conformation is poor (interquartile range >8). 

Through the secondary structure analysis of high/low correlation proteins by SOPMA, it 

was found that the proportion of regular structures (α-helical and extended chains) of 

proteins with high predictive performance was higher than that of the low performance 



 

group, verifying the potential mechanism of model performance differences from the 

perspective of structural biology. Meanwhile, this study also has certain limitations. The 

SOMPA secondary structure prediction software has certain errors, and the secondary 

structure correlation analysis based on SOMPA only takes the proteins with extremely high 

and extremely low Spearman correlations for analysis, which has certain limitations. In the 

future, the relevant technologies and theoretical basis will continue to be enriched, with the 

expectation of conducting more in-depth research on the secondary structure. 

 

3.3.3 Overview of Amino Acid SASA 

 

In the field of protein structure and function research, the Solvent Accessible Surface 

Area (SASA) is a key parameter reflecting the solvent exposure state of amino acid 

residues11. Its definition is to simulate the surface area of amino acid residues that a solvent 

molecule probe can come into contact with when rolling on the three-dimensional structure 

surface of a protein through theoretical calculation. SASA not only visually presents the 

burial depth of amino acid residues in the spatial structure of proteins, but also profoundly 

affects the folding dynamics, structural stability and biological functions of proteins.  

From the analysis of chemical properties, the hydrophilic side chains of polar amino 

acids tend to be exposed on the protein surface to enhance the polar interaction with the 

solvent. The hydrophobic side chains of non-polar amino acids are usually buried inside the 

protein, forming a hydrophobic core that maintains the stability of the three-

dimensional structure of the protein. This amino acid residue distribution law based on 

SASA constitutes the thermodynamic basis for the assembly of the secondary structure and 

the stability of the tertiary structure of proteins. 

 

3.3.3.1 Research Methods 

3.3.3.1.1 Acquisition of SASA data by DSSP and the data organization process 

 

This chapter of the study extracted 148 deep mutation scan data of single-point 

mutant proteins from the Protein Gym database replacement unit. Each protein data file was 



 

independently stored in CSV format. The following research will be carried out on this basis. 

The precise quantification of SASA is an important prerequisite for exploring the 

relationship between protein structure and function. The following are the methods involved 

in the SASA data acquisition and system data integration part of this study: 

This chapter's research adopts the classic DSSP (Dictionary of Secondary Structure 

of Proteins) algorithm to carry out the SASA calculation work. The DSSP algorithm is based 

on the three-dimensional atomic coordinates of proteins. It simulates water molecules with 

a probe sphere with a radius of 1.4A. By analyzing the geometric relationships and spatial 

arrangements between adjacent atoms, it can not only accurately calculate the solvo-

accessible surface area of each amino acid residue, but also simultaneously identify the 

secondary structural elements of proteins, such as α-helix and β-folding. 

Integrate the SASA data calculated by DSSP with the output results of the mutation 

prediction software to prepare for the subsequent analysis part. 

 

3.3.3.1.2 Data Analysis Process of Correlation between SASA and ProtSSN 

Prediction Errors 

 

1. Verify data integrity and use automated scripts to verify whether each file 

contains the necessary fields (SASA value, relative prediction error); 

2. Eliminate the observational data that meet any of the following conditions: 

(2.1) The SASA value is missing or exceeds a reasonable range (0≤SASA≤1). 

(2.2.) The relative error value is missing or exceeds the defined range 

3. The hierarchical analysis method was adopted to evaluate the correlation between 

SASA and prediction error: 

(3.1) Single protein analysis 

Calculate the Spearman rank correlation coefficient (ρ) and its significance level (p-

value) of each protein file 

(3.2) Global Integration: 

The overall correlation coefficient is calculated by the weighted average method: 

Among them, ni represents the effective mutation number of the i-th protein 



 

4. Build a visualization framework based on the Python ecosystem: 

(4.1) Use Kernel Density Estimation (KDE) to plot the distribution of correlation 

coefficients. 

(4.2) Design a bivariate scatter plot, with Spearman's ρ on the horizontal axis and 

the average SASA value on the vertical axis. Introduce color gradients to characterize statistical significance (-

log10(p-value)) and the number of point size mapping mutations 

5. All analyses were completed in the Python 3.10 environment. The main dependent 

libraries include: 

(5.1) Scientific computing: NumPy 1.24, SciPy 1.10 

(5.2) Data Processing: Pandas 2.0 

(5.3) Visualization: Matplotlib 3.7, Seaborn 0.12 

(5.4) Parallel Computing: Concurrent. Futures 

 

3.3.3.2 Results and Analysis 

 

This study systematically analyzed the association patterns between the solvent-

accessible surface area (SASA) and mutation prediction errors of 148 single-point mutant 

proteins, revealing significant global negative correlation characteristics. Statistical analysis 

indicated that 86.5% of the proteins (128/148) exhibited statistically significant correlation 

(p < 0.05). The weighted average of the Spearman rank correlation coefficient (ρ) was -

0.25 (standard deviation ±0.18), the median was -0.29, and the distribution range was [-

0.59, 0.37]. Among them, 75% of the protein ρ va lue s  were concentrated in the range 

of [-0.38, -0.13], showing a clear left-biased trend. This result suggests that as the SASA 

value increases (characterizing the exposure of residues to the solvent environment), the 

prediction error shows a systematic decrease; Conversely, the low SASA residues located 

in the protein core may lead to a significant increase in the difficulty of prediction due to the 

complex co-conformational effect. It is worth noting that although most proteins follow 

the rule of negative correlation, individual cases (such as the maximum ρ value of 

0.37) show reverse association, suggesting that there may be unconventional mechanisms 

of action in specific structural scenarios. 



 

The following figure shows the box plot of the correlation between ProtSSN 

prediction error and SASA (Figure 3.11) and the landscape map of the correlation between 

ProtSSN prediction error and SASA (Figure 3.12). 

 

 

Figure 3.11 Box plot of the correlation between ProtSSN prediction error and SASA 

 

Data quality analysis showed that the number of mutations covered by the study was 

significantly heterogeneous. The number of mutations of individual proteins ranged from 

63 to 16,897 (median 2,384.5), among which proteins with a high number of mutations (such 

as n>10,000) might strengthen the global negative correlation trend through a leverage 

effect. The associated landscape map (Figure 3.12) further reveals that proteins with an 

average SASA value higher than 40 tend to cluster in strongly negatively correlated 

regions (ρ<-0.3), and large-sized data points (corresponding to high mutation numbers) are 

mostly distributed in this region, supporting the robustness of the statistical results. The 

kernel density curve shows that the distribution peak of Spearman's ρ is located around -

0.3, which is highly consistent with the median value. The box plot (Figure 3.11) analysis 

indicates that the data dispersion is controllable (interquartile range [-0.38, -0.13]), and no 



 

extreme outliers. occur. From a biological perspective, the emergence of a negative 

correlation trend might imply that the current prediction model can better predict the 

impact of solvation on surface residues, but it has shortcomings in capturing the 

conformation changes of core residues. This conclusion points out the direction for 

improving protein engineering algorithms. For example, taking into account the parameters 

of the cooperative network among core residues may significantly enhance the prediction 

accuracy of the model.  

 

 

Figure 3.12 Landscape map of the correlation between ProtSSN  

prediction error and SASA 

 

 

However, this study also has shortcomings. As the samples cover multiple species, 

this heterogeneity may interfere with the experimental results. The subsequent research can 

adopt the local weighted regression technique to explore the potential nonlinear laws in the 

data. Meanwhile, through subgroup analysis by species, explore how evolutionary 

conservation affects the relationship between prediction error and solvent accessible surface 



 

area (SASA). In addition, conducting independent verification experiments on proteins with 

a large number of mutations is helpful to determine whether such data will deviate from the 

overall trend, thereby improving the analysis system of large-scale mutation data. 

 

Summary of chapter III 

 

This chapter focuses on the application of ProtSSN software in the prediction and 

evaluation of protein secondary structure mutations. By introducing the DSSP (Precise 

Calculation of Secondary Structure) and SOMPA (Statistical Association Analysis) algorithms, 

a two-dimensional verification framework is constructed to analyze the influence mechanism of 

mutations on regular secondary structures (such as α-helix and β-fold). 

The correlation analysis of the dual algorithms (DSSP/SOMPA) shows that the prediction 

accuracy of the software for regions with high structural order (such as α-helical cores) is 

significantly better than that for irregular structures (such as random curls), and it is speculated 

that it may have a dependent characteristic on stable conformational anchor points. 

The multimodal analysis capability (sequence-structure-function coupling) of 

ProtSSN has unique advantages in structural bioinformatics, especially excelling in the 

scenario of co-mutation. 

In the future, it is necessary to further optimize the prediction model for irregular 

structural regions and expand the adaptability of the algorithm to dynamic conformations 

(such as flexible ring regions) to enhance the full-scenario coverage capability. The research 

objective of this chapter focuses on the correlation mechanism between SASA and 

prediction accuracy, systematically exploring the quantitative relationship between the 

mutation prediction accuracy of ProtSSN and the amino acid solvent accessible surface area 

(SASA), aiming to analyze the influence law of protein surface accessibility on the 

prediction of mutation effects and reveal the prediction characteristics of the software in 

different structural environments. 

The method framework and data analysis are based on the DSSP program to 

accurately calculate the SASA data and construct the correlation model between the 

prediction errors of SASA and ProtSSN. Statistical correlation analysis (such as Spearman 



 

correlation coefficient), kernel density estimation (peak -0.3), and box plot (IQR [-0.38, -

0.13]) were used to quantify the data distribution and trend, covering 63 to 16,897 mutation 

samples (median 2,384.5) to ensure the comprehensiveness of the analysis. 

The core findings reveal significant negative correlations and structural dependencies. 

SASA was globally significantly negatively correlated with the prediction error 

(weighted average ρ= -0.25), and 86.5% of the protein samples showed a statistically 

significant association. 

The results clarified the advantages of ProtSSN in surface accessible residue 

prediction, providing a preferred target for stability design (such as antibody affinity 

optimization.



 

CONCLUSIONS 

 

This study took the artificial intelligence protein mutation design software ProtSSN 

as the object. Through multi-dimensional analyses such as integrating deep mutation scan 

data, secondary structure prediction, and SASA correlation, it systematically revealed its 

technical characteristics, mechanism of action, and engineering application potential in the 

prediction of protein mutation effects. It provides theoretical and practical references for AI-

driven protein design. 

Studies have shown that ProtSSN achieves the deep integration of protein sequence 

semantics and three-dimensional structural topology through a dual-modal 

collaborative pre-training framework. Its core advantage lies in the precise analysis of 

the mutation effects of regular secondary structures (α-helical, extended chains). In the 

Protein Gym benchmark test, the Spearman correlation coefficient of the model for single-

point mutations reached 0.429, and for multi-point mutation scenarios, it was 0.550, 

significantly superior to the traditional sequence model, reflecting its efficient capture 

ability for the synergistic effect of amino acid sites. This performance improvement stems 

from the quantitative coding of the geometric characteristics of the protein 

microenvironment, with high accuracy in predicting the distribution of mutations in the 

α -helix or extended chain regions. The model captures structural disturbances such as 

the breaking of hydrogen bonds in the main chain and the destruction of hydrophobic cores 

through the isovariant graph neural network (EGNN), achieving a nonlinear mapping from 

sequence mutations to thermodynamic stability (such as ΔTm, ΔΔG). 

The secondary structure analysis based on statistical principles and SOPMA software 

further reveals that the prediction accuracy of ProtSSN is closely related to the structural 

orderliness: the prediction accuracy of regular structural mutations is improved compared 

with irregular occur. The essence of the difference lies in the multi-level coupling modeling 

of "sequence tendency - geometric feature - functional effect" by the model. The 

hydrophobic accumulation of the α -helical core and the hydrogen bond network between 

the extended chain sheets provide clear structural anchor points for the model. However, 

the flexible feature of irregular curling lacks stable conformational references, and the 



 

prediction accuracy is significantly affected by the synergy effect of adjacent regular 

structures. This in-depth analysis of the structure-function correlation provides precise 

computational guidance for targeted stability optimization and functional regulation. 

Further analysis of SASA based on DSSP revealed that there was a significant 

global negative correlation between solvent accessible surface area (SASA) and mutation 

prediction error (weighted average ρ= -0.25), and 86.5% of the proteins showed a 

statistically significant association. The data covered 63 to 16,897 mutations (median 

2,384.5), and the highly mutated samples (n>10,000) strengthened the negative correlation 

trend through the leverage effect. The kernel density distribution (peak -0.3) and the box 

plot (IQR [-0.38, -0.13]) indicate that the data dispersion is controllable. The associated 

landscape map reveals that the high SASA protein (>0.4) is concentrated in the strongly 

negatively correlated area (ρ<-0.3), supporting the reliability of surface residue 

prediction and the complexity of the conformation synergy effect in the core area. The 

results provide a structural feature basis for optimizing the protein prediction algorithm and 

suggest that the influence of highly mutated samples on the global trend needs to be 

evaluated specifically. 

From the perspective of practical application, ProtSSN's lightweight architecture (110 

million parameters) and efficient inference speed (≤2 hours per task) have broken through 

the computational bottleneck of traditional molecular simulation. Its open-source feature 

and visualization module have significantly lowered the technical threshold, and can 

increase the efficiency of mutant screening by more than three times in wet experiments. 

Effectively reduce the trial-and-error costs in research and development in fields such as 

biomedicine and biomanufacturing. For instance, in enzyme engineering modification, the 

model precisely locates high-potential mutation sites through site matching rate (SMR) and 

stability prediction error (SPE) indicators, promoting the transformation from an "empirical 

trial and error" design paradigm to a "computation-first" one. 

This study innovatively explored the intrinsic connection between the prediction 

results of ProtSSN and the secondary conformational characteristics of proteins as well as 

the solvent contact area on the basis of previous research. It adopted the Protein Gym 

standard dataset combined with the diverse samples of the PDB structure database to ensure 



 

the wide representativeness of the analysis objects in terms of functional categories and 

species origin. In the experiment, the SOPMA platform was used to analyze the secondary 

conformation distribution characteristics of the samples, and the DSSP program was 

adopted to accurately calculate the solvent-accessible surface parameters of each amino acid 

residue. By integrating bioinformatics and statistical analysis methods, and focusing on the 

two key dimensions of the difference characteristics of prediction accuracy in different 

secondary conformation regions and the correlation pattern between solvent contact area 

and prediction error, the research results show the quantitative relationship between the 

characteristics of the local microenvironment of proteins and the prediction of mutation 

effects. This not only deepens the understanding of the mechanism of amino acid variation, 

it provides important theoretical support for optimizing the parameters of the prediction 

algorithm and guiding the rational design of proteins. 

Meanwhile, this study also has certain deficiencies. The research mainly focuses on 

the Protein GYM dataset and does not conduct larger-scale and more in-depth research and 

analysis on other datasets. Although the Protein GYM dataset has significant value and 

covers various protein mutation phenotypic data, However, different datasets have 

differences in data characteristics and covered contents. The lack of research on other 

datasets may lead to limitations in the research results. And for the secondary structure 

chapter, there are certain limitations due to issues such as technology and sample size. Future 

research can expand the scope of the dataset, incorporate proteins with broader correlation 

coefficients for comprehensive analysis, and learn more advanced techniques to make up 

for these deficiencies and promote the in-depth development of this field. 

In conclusion, through the multi-dimensional system of "data-driven - structure analysis - 

SASA association", this study not only clarified the technical advantages of ProtSSN in structure-

driven mutation design, but also the research results provided a new perspective for 

understanding the complex mapping relationship of "sequence - structure - solvent accessibility 

- function". Promoting protein engineering towards precision and efficiency is of great practical 

significance for accelerating the development of new enzyme preparations and the design of 

therapeutic antibodies, and it is hoped that it can contribute to the future development of the 

intersection of synthetic biology and computational biology. 



 

1. The content of this chapter is a summary and analysis of the full text. ProtSSN 

fuses sequence and structural features based on a dual-modal framework. In the Protein 

Gym test, its single-point ( ρ=0.429) and multi-point mutation (ρ=0.550) prediction 

performance is significantly better than that of traditional models. The EGNN network 

accurately models structural disturbances such as hydrogen bond breakage and hydrophobic 

core damage. 

2. The regular secondary structure (α-helix/extended chain) has high prediction 

accuracy and relies on stable conformational anchor points (such as hydrogen bond 

networks); The high SASA region (>0.4) was strongly negatively correlated with the 

prediction error (weighted ρ=-0.25), and the conformational synergy effect in the core area 

increased the complexity. 

3. The lightweight architecture (110 million parameters) and efficient inference 

(≤2 hours per task) increase the screening efficiency of wet experiments by three times, 

reduce the trial-and-error cost of antibody/enzyme design, and the open-source module 

promotes "computation-first" applications. 

4. Limited to the insufficient coverage of the Protein GYM dataset, it is necessary to 

expand heterogeneous data such as membrane proteins. In the future, multi-scale algorithms 

will be integrated to optimize the prediction of the core area and enhance the adaptability of 

dynamic conformation. 

5. Research and establish a new paradigm of dynamic mapping of "sequence - 

structure - function" to accelerate the precise design of enzyme preparations and therapeutic 

antibodies and promote the intelligent development of protein engineering. 
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