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The widespread adoption of additive metal manufacturing for end-use part 

function depends on our ability to consistently produce high quality parts 

without iterative test cycles.  

A transfer learning approach is proposed to improve part quality for 

various machine modifications used in additive manufacturing. 

This approach is based on an intelligent control methodology using 

machine learning and on-site optical metrology. 

The main focus is on creating transfer learning models to predict and 

control the geometry of the distribution shape. 

The general transfer learning model includes 3 component blocks based 

on the respective models. 

 

 
Figure 1 – Surrogate model for data management 

 

The first block is a surrogate model for data management. This model is 

based on detailed physical modeling that controls the geometric details, material 

properties, and laser processing parameters with the resulting melt pool depth 

and surface temperature. 

The components are a data generation sub-block, where physical 

modeling is used to generate data that relates the input and process variables to 

the corresponding outputs, and a surrogate model sub-block that learns from the 
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simulation data to create the following surrogate models that predict and verify 

the performance of the additive manufacturing system. 

This model predicts the melt bath geometry as a function of process 

parameters, such as laser power, which can be adjusted in real time, as well as 

spatial changes in part geometry, such as the presence of thin protrusions. 

The second block is the surrogate model corrector, which improves the 

accuracy of the data-driven surrogate model using experimental data obtained 

from a fully equipped metalworking machine sample. 

 
Figure 2 – Base model of calibration and evaluation 

 

The second stage of the proposed system uses the basic forecasting and 

estimation models created in the first stage. They are calibrated against the 

actual results of the additive manufacturing system, as shown in Fig. 2. 

The test cases are used in an exemplary metal powder bed melting system. 

The measured results are compared with the results estimated by the basic 

models. 

The conversion factors are used to minimize the errors between the 

measured and modeled results, resulting in the creation of calibrated surrogate 

models. The result is a calibrated surrogate model, in Fig. 3, which can organize 

the bath depth, melt, and surface temperature with a high level of accuracy for a 

specific machine sample over a range of geometries, material details, and laser 

powers. 

The third block includes a transfer learning model based on empirical data 

from a specific machine design that can quickly update the surrogate model's 

predictions to improve accuracy when moving from design to design, or from 

machine to machine.  

 
Figure 3 – Model of Transfer Learning 
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In the third stage of the proposed system, the additive manufacturing 

process controller and transfer learning scheme are created.  

As shown in Fig. 3, the on-site process controller uses the calibrated 

surrogate model from the previous step to predict how the additive 

manufacturing system responds to a set of processing parameters and optimizes 

these parameters to achieve the performance goal, i.e., to maximize geometric 

accuracy and minimize thermal effects. 

The surrogate model is used to optimize the laser path to achieve the 

desired geometry. In this step, transfer learning is performed using the 

evaluation model to estimate the actual valid results of the system based on real-

time metrology. 

The predicted result is compared to the performance target to create 

correction factors that complement the future predictions of the surrogate 

models to more accurately control the current additive manufacturing system. 

A test scan can be performed at the beginning of each assembly in parallel 

with the fabrication of the support structure to select the correction factors for 

each machine. The correction factors can be updated after each layer for additive 

predictive control. 

A sample machine used in additive manufacturing of metal products is 

shown in Fig. 4.  

 

 
Figure 4 – EOSINT M280 machine 

 

It is for these types of machines that the above additive intelligent control 

with machine learning is offered. First of all, it is an intelligent control of laser 

power, which makes it possible to improve the quality of manufactured 

products. 
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Based on the proposed models, a controller was created and tested on an 

unsupported ledge in order to achieve an acceptable melt depth profile despite 

changes in the thermal conductivity of the base material. 

A drawing of the geometry and the desired space profile is shown in    

Fig. 5a. 

Gray represents the solid material, turquoise represents the powder 

material, and red represents the desired melt profile. 

The laser profile predicted by machine learning is shown in Fig. 5b and 

the resulting melt profile shown in Fig. 5с. The standard deviation of the melt 

for the optimized laser power profile ranged from 9 micrometers to 14 

micrometers. 

 

Figure 5 – Melt depth control of an unsupported overhang 

 

To implement the proposed intelligent control of additive manufacturing 

using transfer learning, a measuring system for infrared visualization of optical 

emission spectroscopy is required, as shown in Fig. 6. 

 

Figure 6 – Proposed optical layout for in-situ metrology and  

real-time sensor control 

 

It consists of 2 blocks: module 1 of the on-site infrared imaging system, 

emission spectroscopy, and module 2, which includes real-time laser intensity 

control. 

Based on the presented models, adaptive intelligent control, melting of 

metal powder during the additive manufacturing of metal products is realized. 


