надежность промышленных РОБОТОВ

Дмитрий МАЗУРЕНКО¹, Леонид РОМАНИВ¹, Леонид БЕРЕЗИН^{1*}

¹ Киевский национальный университет технологий и дизайна, факультет мехатроники и компьютерных технологий, Киев, Украина

*Автор корреспондент: Березин, Леонид, lnb07@ukr.net

Аннотация. В статье проанализированы и систематизированы сведения о надежности промышленных роботов. Рассмотрены вопросы параметрической надежности роботов по критерию точности и повторяемости их позиционирования. Предложен вариант лабораторного измерения координат позиционирования реального робота. Перечислены основные параметрические погрешности роботов.

Ключевые слова: параметрические погрешности, функциональные отказы, точность, повторяемость, координатно-измерительная машина.

Надежность – свойство объекта сохранять во времени в установленных границах все параметры, которые обеспечивают выполнение необходимых функций в заданных условиях эксплуатации. Учитывая конструктивные усложнения промышленных роботов (ПР), объединение их в гибкие автоматизированные комплексы, увеличение силовых нагрузок при одновременном уменьшении их металлоемкости, вопросы надежности роботов являются актуальными.

По признаку неисправности отказы ПР делятся на параметрические и функциональные. К параметрическим относят отказы, при которых один или ряд параметров ПР изменяются в недопустимых пределах, к функциональным - отказы, при которых выполнение заданных функций роботом невозможно. Для анализа параметрической надежности действующих ПР используют тестирование по точности и повторяемости позиционирования в реальном времени и пространстве. Под точностью ПР понимают его способность достигать заданной точки в рабочей зоне. Повторяемость ПР характеризуется возможностью воспроизведения повторных перемещений в заданную точку. ПР с позиций точности классифицируют на ультра точные (допустимый диапазон отклонений составляет $\pm 0,001$; $\pm 0,01$) мм, очень точные ($\pm 0,01$; $\pm 0,1$) мм, с большой ($\pm 0,1$; $\pm 0,5$) мм, нормальной ($\pm 0,5$; ± 1) мм и низкой точностью ($>\pm 1$).

Установлено [1], что наибольшее влияние на позиционирование ПР оказывает его калибровка. Основными параметрами, определяющими точность ПР есть угловые или линейные изменения отдельных звеньев манипулятора. Процесс тестирования ПР на точность и повторяемость выполняют для точного определения функциональной зависимости от считываемых показателей датчиков в степенях подвижности и текущим положением рабочего органа в пространстве. По результатам сравнения вносятся соответствующие изменения параметров в программное обеспечение для уточнения позиционирования ПР.

Основные методические положения тестирования ПР предложены в работе [2]. Для расчетов их точности AP_P рекомендовано использовать следующие зависимости:

$$AP_P = \sqrt{\left(\overline{x} - x_C\right)^2 + \left(\overline{y} - y_C\right)^2 + \left(\overline{z} - z_C\right)^2}$$

где $\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$, $\bar{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$, $\bar{z} = \frac{1}{n} \sum_{j=1}^{n} z_j$; \bar{x} , \bar{y} , \bar{z} - средние значения координат серии

измеряемых точек при испытаниях; x_C , y_C , z_C - координаты заданного положения; x_j , y_j , z_j - координаты j - ой измеряемой позиции.

Повторяемость PR для определенной позиции ПР определяется по формуле:

$$RP_l = \bar{l} + 3S_l$$
, где $\bar{l} = \frac{1}{n} \sum_{j=1}^n l_j$; $l_j = \sqrt{(x_j - \bar{x})^2 + (y_j - \bar{y})^2 + (z_j - \bar{z})^2}$; $S_l = \sqrt{\frac{\sum_{j=1}^n (l_j - \bar{l})^2}{n-1}}$

Повторяемость RP графически представляет радиус сферы, центр которой совпадает с центром тяжести.

Соответственно для повторяемости ориентации имеем:

$$RP_a = \pm 3S_a = \pm 3\sqrt{\frac{\sum\limits_{j=1}^{n} \left(a_3 - \overline{a}\right)^2}{n-1}} \; ; \; RP_b = \pm 3S_b = \pm 3\sqrt{\frac{\sum\limits_{j=1}^{n} \left(b_3 - \overline{b}\right)^2}{n-1}} \; ; \; RP_c = \pm 3S_c = \pm 3\sqrt{\frac{\sum\limits_{j=1}^{n} \left(c_3 - \overline{c}\right)^2}{n-1}} \; .$$

Авторами предлагается лабораторное измерение позиционирования реального ПР при тестировании. Информацию о координатах захвата ПР в отдельных точках получали с контроллера, а результаты измерения — с помощью координатно-измерительной машины FARO Laser Tracker Ventage [3]. Использование трекера позволяет с высокой точностью измерять различные геометрические параметры (координаты точек, окружности, плоскости, цилиндры, расстояния, углы, отклонения формы криволинейной поверхности и другое). Зафиксированное расстояние между трекером и его зондом позволяет определить положение центра SMR, которое в программе описывается в заданной оператором системе координат значениями x_C , y_C , z_C . Благодаря непрерывному анализу разности в длине лазерного луча (передаваемого и отраженного с частотой тысяч раз в секунду) динамично отслеживается положение измерительного зонда.

Параметрические погрешности могут быть результатом принятых производственных и сборочных допусков. Их уменьшение, как правило, не целесообразно, поскольку минимизация допусков ограничена оценкой соотношения затраты и изменение надежности. Полностью невозможно исключить и погрешности приводов (наличие зазоров и упругость в зубчатых передачах, систематические погрешности двигателей приводных устройств), и алгоритмов управления, вызванных округлениями значений параметров. Это обусловлено ограниченной на практике разрешающей способностью датчиков, которые передают считываемую информацию о значениях обобщенных координат. Погрешности в подшипниках имеют вероятностную составляющую, которая для жестких звеньев ПР является незначительной.

Выводы. Точность и повторяемость промышленных роботов определяет их параметрическую надежность. Для улучшения позиционирования роботов проводят их тестирование и по результатам сравнения координат функциональной зависимости с текущими положениями рабочего органа вносятся соответствующие изменения в программное обеспечение. Предложено техническое решение реализации стандартной методики тестирования роботов.

Список использованной литературы

- 1. ЧАБАННЫЙ, А. Надежность промышленных роботов. В: *Technical Sciences*, 2015, №2. С. 226-228.
- 2. ГОСТ Р 60.3.3.1-2016/ИСО 9283:1998. Роботы промышленные манипуляционные. Рабочие характеристики и соответствующие методы тестирования.
- 3. FARO TECHNOLOGIES INC [онлайн]. [дата обращения 01.10.2021]. Доступно: http://www.faro.in.ua/tracker_vantage.html.