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WEAKLY NONLINEAR INTEGRODIFFERENTIAL EQUATION  

 

The conditions for the existence of solutions of boundary-value problems for 

weakly nonlinear integrodifferential equations with parameters were given in [1].  

The present work considers the questions for the illustration of the main points 

of theoretical conclusions to the next problem 
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We reduce problem (1), (2) to the equivalent integral equation. For this purpose, 

we consider the auxiliary problem 
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As will be seen below, problem (3) has the unique solution for an arbitrary given 

function   ,2 Ly . Let us construct it. For this purpose, we will find the general 

solution of (3). It takes the form 
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To determine the unknown parameters   Rdc ,, , we substitute the general 

solution (4) in conditions (2). After some appropriate calculations, we obtain 
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Having solved this system of equations, we have 
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Substituting this solution in formula (4), we obtain 
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Let us introduce the notation 
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Then the solution of problem (3) takes the form 
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i.e., the form (10), (11) in [1], where 0,0)(  th  and the kernels ),( stG  and )(sГ  

are defined by formula (5). 

Obviously, problem (1), (2) will be equivalent to problem (3), if we set 
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in the latter. Substituting the first relation in (6) in the above formula, we obtain the 

integral equation 
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By Theorem 1 in [1], problem (1), (2) is equivalent to the integral equation (7), 

and their solutions are connected by relations (10) and (11) in [1].  

Executing the relevant calculations with regard for the formulas 
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which are proper for any a  and b   with R , we verify that 
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is a solution of the problem 
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Since the calculations with the use of formula (5) yield 
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it is easy to see that the function 
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is a solution of the integral equation (7). 

On the basis of formulas (8), (9), and (10), we have 
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which confirms the assertion of Theorem 1 in [1]. 
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