PHYSICS AND MATHS

UDC 517.968.7

Nesterenko Olha Borysivna

Cand. Phys.-Math. Sci., Assoc. Prof., Head of the Department of Higher Mathematics Kyiv National University of Technologies and Design, Ukraine

WEAKLY NONLINEAR INTEGRODIFFERENTIAL EQUATION

The conditions for the existence of solutions of boundary-value problems for weakly nonlinear integrodifferential equations with parameters were given in [1].

The present work considers the questions for the illustration of the main points of theoretical conclusions to the next problem

$$x''(t) + \frac{12}{\pi^2}x(t) = 6\pi^2t - 12t^3 + \lambda\cos\frac{t}{2} + \frac{1}{2\pi^2}\int_{-\pi}^{\pi}\sin(t+s)|x(s)|ds,$$
 (1)

$$x(-\pi) = x(\pi) = 0,$$

$$\int_{-\pi}^{\pi} x(t) \cos \frac{t}{2} dt = 0.$$
 (2)

We have in (1):
$$p = \frac{12}{\pi^2}$$
, $\varepsilon = \frac{1}{2\pi^2}$, $f(t) = 6\pi^2 t - 12t^3$.

We reduce problem (1), (2) to the equivalent integral equation. For this purpose, we consider the auxiliary problem

$$x''(t) = \lambda \cos \frac{t}{2} + y(t),$$
 $x(-\pi) = x(\pi) = 0,$
$$\int_{-\pi}^{\pi} x(t) \cos \frac{t}{2} dt = 0$$
 (3)

SCIENTIFIC HORIZON IN THE CONTEXT OF SOCIAL CRISES

As will be seen below, problem (3) has the unique solution for an arbitrary given function $y \in L_2[-\pi, \pi]$. Let us construct it. For this purpose, we will find the general solution of (3). It takes the form

$$x(t) = ct + d - 4\lambda \cos \frac{t}{2} + \int_{-\pi}^{\pi} (t - s)y(s)ds.$$
 (4)

To determine the unknown parameters $\{c,d,\lambda\}\subset R$, we substitute the general solution (4) in conditions (2). After some appropriate calculations, we obtain

$$d - \pi c = 0, \qquad d + \pi c = \int_{-\pi}^{\pi} (\pi - s) y(s) ds, \qquad 4d - 4\pi \lambda = \int_{-\pi}^{\pi} (4\cos\frac{s}{2} + 2s - 2\pi) y(s) ds$$

Having solved this system of equations, we have

$$d = \frac{1}{2} \int_{-\pi}^{\pi} (\pi - s) y(s) ds, \qquad c = \frac{d}{\pi}, \qquad \lambda = -\frac{1}{2} \int_{-\pi}^{\pi} y(s) \cos \frac{s}{2} ds.$$

Substituting this solution in formula (4), we obtain

$$x(t) = \frac{t+\pi}{2\pi} \int_{-\pi}^{\pi} (\pi - s) y(s) ds - \frac{4}{\pi} \cos \frac{t}{2} \int_{-\pi}^{\pi} y(s) \cos \frac{s}{2} ds + \int_{-\pi}^{\pi} (t-s) y(s) ds.$$

Let us introduce the notation

$$\Gamma(s) = -\frac{1}{\pi} \cos \frac{s}{2}, \qquad G(t,s) = -\frac{4}{\pi} \cos \frac{t}{2} \cos \frac{s}{2} + \frac{1}{2\pi} \begin{cases} (t+\pi)(s-\pi), & t \le s, \\ (t-\pi)(s+\pi), & t \ge s. \end{cases}$$
 (5)

Then the solution of problem (3) takes the form

SCIENTIFIC HORIZON IN THE CONTEXT OF SOCIAL CRISES

$$x(t) = \int_{-\pi}^{\pi} G(t,s) y(s) ds, \qquad \lambda = \int_{-\pi}^{\pi} \Gamma(s) y(s) ds, \qquad (6)$$

i.e., the form (10), (11) in [1], where h(t) = 0, $\sigma = 0$ and the kernels G(t,s) and $\Gamma(s)$ are defined by formula (5).

Obviously, problem (1), (2) will be equivalent to problem (3), if we set

$$y(t) = f(t) - px(t) + \varepsilon \int_{-\pi}^{\pi} \sin(t+s) |x(s)| ds$$

in the latter. Substituting the first relation in (6) in the above formula, we obtain the integral equation

$$y(t) = f(t) - p \int_{-\pi}^{\pi} G(t,s) y(s) ds + \varepsilon \int_{-\pi}^{\pi} \sin(t+\xi) \left| \int_{-\pi}^{\pi} (\xi,s) y(s) ds \right| d\xi.$$
 (7)

By Theorem 1 in [1], problem (1), (2) is equivalent to the integral equation (7), and their solutions are connected by relations (10) and (11) in [1].

Executing the relevant calculations with regard for the formulas

$$\int_{-\pi}^{\pi} \sin s \left| a \sin s + b(\pi^2 s - s^3) \right| ds = 0, \qquad \int_{-\pi}^{\pi} \cos s \left| a \sin s + b(\pi^2 s - s^3) \right| ds = (24 - 2\pi^2)b$$

which are proper for any a and b with R^+ , we verify that

$$x^*(t) = \pi^2 (\sin t + \pi^2 t - t^3), \qquad \lambda^* = 0$$
 (8)

is a solution of the problem

$$x''(t) + \frac{12}{\pi^2}x(t) = 6\pi^2t - 12t^3 + \frac{1}{2\pi^2} \int_{-\pi}^{\pi} \sin(t+s)|x(s)|ds + \lambda\cos\frac{t}{2},$$

SCIENTIFIC HORIZON IN THE CONTEXT OF SOCIAL CRISES

$$x(-\pi) = x(\pi) = 0$$
, $\int_{-\pi}^{\pi} x(t) \cos \frac{t}{2} dt = 0$.

Since the calculations with the use of formula (5) yield

$$\int_{-\pi}^{\pi} G(t,s)(-6\pi^2 s - \pi^2 \sin s)ds = \pi^2 (\sin t + \pi^2 t - t^3),$$
 (9)

it is easy to see that the function

$$y^*(t) = -6\pi^2 t - \pi^2 \sin t \tag{10}$$

is a solution of the integral equation (7).

On the basis of formulas (8), (9), and (10), we have

$$x^*(t) = \int_{-\pi}^{\pi} G(t,s)y^*(s)ds$$
, $y^*(t) = \frac{d^2}{dt^2}x^*(t)$

which confirms the assertion of Theorem 1 in [1].

References:

1. Luchka, A. Y., & Nesterenko, O. B. (2009). Methods for the solution of boundary-value problems for weakly nonlinear integro-differential equations with parameters and restrictions. *Ukrainian Mathematical Journal*, 61(5), 801–809. https://doi.org/10.1007/s11253-009-0241-x